Loading…
Design and formulation of trimethylated chitosan-graft-poly(ɛ-caprolactone) nanoparticles used for gene delivery
•TMC-g-PCL tightly condensed pDNA despite low molecular weight of TMC.•The uptake of gene complexes was high due to the hydrophobic modification.•The quaternization degree was an important factor for TMC-based gene vector. The ideal gene polyplexes should have a subtle balance between polyplex stabi...
Saved in:
Published in: | Carbohydrate polymers 2014-01, Vol.101, p.104-112 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c395t-f91024be49b25b6f00320f36006966211c61a94d06504d6a39769bf0e760c2a43 |
---|---|
cites | cdi_FETCH-LOGICAL-c395t-f91024be49b25b6f00320f36006966211c61a94d06504d6a39769bf0e760c2a43 |
container_end_page | 112 |
container_issue | |
container_start_page | 104 |
container_title | Carbohydrate polymers |
container_volume | 101 |
creator | Tang, San Huang, Zhixiong Zhang, Haiwen Wang, Youxiang Hu, Qiaoling Jiang, Hongliang |
description | •TMC-g-PCL tightly condensed pDNA despite low molecular weight of TMC.•The uptake of gene complexes was high due to the hydrophobic modification.•The quaternization degree was an important factor for TMC-based gene vector.
The ideal gene polyplexes should have a subtle balance between polyplex stability to protect DNA against nucleases, and polyplex instability to permit DNA dissociation inside cells. In this research, low molecular weight trimethylated chitosan was chemically modified with poly(ɛ-caprolactone). Owing to the amphiphilic character, trimethylated chitosan-graft-poly(ɛ-caprolactone) (TMC-g-PCL) formed nanoparticles in aqueous media. TMC-g-PCL nanoparticles could effectively condense pDNA into polyplexes about 200nm in size. The TMC-g-PCL/DNA polyplexes were stable in physiological salt condition and showed high uptake efficiency probably due to the increasing cell membrane-carrier interaction as a result of hydrophobic modification. However, the high degree of quaternization influenced the buffer capacity of TMC-g-PCL and led to a reduction in the release from the lysosomes. By adding chloroquine to exclude the limitation of lysosome escape, the transfection efficiency of TMC-g-PCL/DNA polyplexes was similar to that of PEI/DNA polyplexes. This study demonstrated the potential of TMC-g-PCL/DNA nanoparticles as an efficient carrier for gene delivery. |
doi_str_mv | 10.1016/j.carbpol.2013.09.053 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1465175987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861713009454</els_id><sourcerecordid>1465175987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-f91024be49b25b6f00320f36006966211c61a94d06504d6a39769bf0e760c2a43</originalsourceid><addsrcrecordid>eNqFkd1uFCEUgInR2G31ETTcmNSLmcIMMMOVaaq1Jk16o9eEYQ5bNixsgWmyz-IT9a2k7qqXnhuSk-_8fSD0jpKWEiouNq3RadpF33aE9i2RLeH9C7Si4yAb2jP2Eq0IZawZBR1O0GnOG1JDUPIanXSsk3LgfIUePkN264B1mLGNabt4XVwMOFpckttCud_XDMzY3LsSsw7NOmlbmjp4f_70szF6l6LXpsQAH3HQIe50Ks54yHjJ8LspXkMAPIN3j5D2b9Arq32Gt8f3DP24_vL96qa5vfv67erytjG95KWxkpKOTcDk1PFJWEL6jthe1BOkEB2lRlAt2UwEJ2wWupeDkJMlMAhiOs36M3R-6FsXfFggF7V12YD3OkBcsqJMcDpwOQ4V5QfUpJhzAqt29Xad9ooS9WxbbdTRtnq2rYhU1Xate38csUxbmP9W_dFbgQ9HQGejvU06GJf_cWP9p2EcK_fpwEEV8uggqWwcBAOzS2CKmqP7zyq_AG35obM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1465175987</pqid></control><display><type>article</type><title>Design and formulation of trimethylated chitosan-graft-poly(ɛ-caprolactone) nanoparticles used for gene delivery</title><source>ScienceDirect Freedom Collection</source><creator>Tang, San ; Huang, Zhixiong ; Zhang, Haiwen ; Wang, Youxiang ; Hu, Qiaoling ; Jiang, Hongliang</creator><creatorcontrib>Tang, San ; Huang, Zhixiong ; Zhang, Haiwen ; Wang, Youxiang ; Hu, Qiaoling ; Jiang, Hongliang</creatorcontrib><description>•TMC-g-PCL tightly condensed pDNA despite low molecular weight of TMC.•The uptake of gene complexes was high due to the hydrophobic modification.•The quaternization degree was an important factor for TMC-based gene vector.
The ideal gene polyplexes should have a subtle balance between polyplex stability to protect DNA against nucleases, and polyplex instability to permit DNA dissociation inside cells. In this research, low molecular weight trimethylated chitosan was chemically modified with poly(ɛ-caprolactone). Owing to the amphiphilic character, trimethylated chitosan-graft-poly(ɛ-caprolactone) (TMC-g-PCL) formed nanoparticles in aqueous media. TMC-g-PCL nanoparticles could effectively condense pDNA into polyplexes about 200nm in size. The TMC-g-PCL/DNA polyplexes were stable in physiological salt condition and showed high uptake efficiency probably due to the increasing cell membrane-carrier interaction as a result of hydrophobic modification. However, the high degree of quaternization influenced the buffer capacity of TMC-g-PCL and led to a reduction in the release from the lysosomes. By adding chloroquine to exclude the limitation of lysosome escape, the transfection efficiency of TMC-g-PCL/DNA polyplexes was similar to that of PEI/DNA polyplexes. This study demonstrated the potential of TMC-g-PCL/DNA nanoparticles as an efficient carrier for gene delivery.</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2013.09.053</identifier><identifier>PMID: 24299755</identifier><identifier>CODEN: CAPOD8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Biological and medical sciences ; Chemistry, Pharmaceutical ; Chitosan - chemistry ; DNA - chemistry ; DNA - genetics ; Drug Carriers - chemistry ; Drug Carriers - metabolism ; Drug Carriers - toxicity ; Drug Design ; Endocytosis ; Exact sciences and technology ; General pharmacology ; HEK293 Cells ; Humans ; Hydrophobic and Hydrophilic Interactions ; Intracellular Space - metabolism ; Medical sciences ; Methylation ; Nanoparticles ; Nanoparticles - chemistry ; Natural polymers ; Non-viral gene delivery ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; Physicochemistry of polymers ; Poly(ɛ-caprolactone) ; Polyesters - chemistry ; Starch and polysaccharides ; Static Electricity ; Transfection - methods ; Trimethylated chitosan</subject><ispartof>Carbohydrate polymers, 2014-01, Vol.101, p.104-112</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-f91024be49b25b6f00320f36006966211c61a94d06504d6a39769bf0e760c2a43</citedby><cites>FETCH-LOGICAL-c395t-f91024be49b25b6f00320f36006966211c61a94d06504d6a39769bf0e760c2a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28344788$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24299755$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, San</creatorcontrib><creatorcontrib>Huang, Zhixiong</creatorcontrib><creatorcontrib>Zhang, Haiwen</creatorcontrib><creatorcontrib>Wang, Youxiang</creatorcontrib><creatorcontrib>Hu, Qiaoling</creatorcontrib><creatorcontrib>Jiang, Hongliang</creatorcontrib><title>Design and formulation of trimethylated chitosan-graft-poly(ɛ-caprolactone) nanoparticles used for gene delivery</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>•TMC-g-PCL tightly condensed pDNA despite low molecular weight of TMC.•The uptake of gene complexes was high due to the hydrophobic modification.•The quaternization degree was an important factor for TMC-based gene vector.
The ideal gene polyplexes should have a subtle balance between polyplex stability to protect DNA against nucleases, and polyplex instability to permit DNA dissociation inside cells. In this research, low molecular weight trimethylated chitosan was chemically modified with poly(ɛ-caprolactone). Owing to the amphiphilic character, trimethylated chitosan-graft-poly(ɛ-caprolactone) (TMC-g-PCL) formed nanoparticles in aqueous media. TMC-g-PCL nanoparticles could effectively condense pDNA into polyplexes about 200nm in size. The TMC-g-PCL/DNA polyplexes were stable in physiological salt condition and showed high uptake efficiency probably due to the increasing cell membrane-carrier interaction as a result of hydrophobic modification. However, the high degree of quaternization influenced the buffer capacity of TMC-g-PCL and led to a reduction in the release from the lysosomes. By adding chloroquine to exclude the limitation of lysosome escape, the transfection efficiency of TMC-g-PCL/DNA polyplexes was similar to that of PEI/DNA polyplexes. This study demonstrated the potential of TMC-g-PCL/DNA nanoparticles as an efficient carrier for gene delivery.</description><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Chemistry, Pharmaceutical</subject><subject>Chitosan - chemistry</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>Drug Carriers - chemistry</subject><subject>Drug Carriers - metabolism</subject><subject>Drug Carriers - toxicity</subject><subject>Drug Design</subject><subject>Endocytosis</subject><subject>Exact sciences and technology</subject><subject>General pharmacology</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Intracellular Space - metabolism</subject><subject>Medical sciences</subject><subject>Methylation</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Natural polymers</subject><subject>Non-viral gene delivery</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>Physicochemistry of polymers</subject><subject>Poly(ɛ-caprolactone)</subject><subject>Polyesters - chemistry</subject><subject>Starch and polysaccharides</subject><subject>Static Electricity</subject><subject>Transfection - methods</subject><subject>Trimethylated chitosan</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkd1uFCEUgInR2G31ETTcmNSLmcIMMMOVaaq1Jk16o9eEYQ5bNixsgWmyz-IT9a2k7qqXnhuSk-_8fSD0jpKWEiouNq3RadpF33aE9i2RLeH9C7Si4yAb2jP2Eq0IZawZBR1O0GnOG1JDUPIanXSsk3LgfIUePkN264B1mLGNabt4XVwMOFpckttCud_XDMzY3LsSsw7NOmlbmjp4f_70szF6l6LXpsQAH3HQIe50Ks54yHjJ8LspXkMAPIN3j5D2b9Arq32Gt8f3DP24_vL96qa5vfv67erytjG95KWxkpKOTcDk1PFJWEL6jthe1BOkEB2lRlAt2UwEJ2wWupeDkJMlMAhiOs36M3R-6FsXfFggF7V12YD3OkBcsqJMcDpwOQ4V5QfUpJhzAqt29Xad9ooS9WxbbdTRtnq2rYhU1Xate38csUxbmP9W_dFbgQ9HQGejvU06GJf_cWP9p2EcK_fpwEEV8uggqWwcBAOzS2CKmqP7zyq_AG35obM</recordid><startdate>20140130</startdate><enddate>20140130</enddate><creator>Tang, San</creator><creator>Huang, Zhixiong</creator><creator>Zhang, Haiwen</creator><creator>Wang, Youxiang</creator><creator>Hu, Qiaoling</creator><creator>Jiang, Hongliang</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140130</creationdate><title>Design and formulation of trimethylated chitosan-graft-poly(ɛ-caprolactone) nanoparticles used for gene delivery</title><author>Tang, San ; Huang, Zhixiong ; Zhang, Haiwen ; Wang, Youxiang ; Hu, Qiaoling ; Jiang, Hongliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-f91024be49b25b6f00320f36006966211c61a94d06504d6a39769bf0e760c2a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Chemistry, Pharmaceutical</topic><topic>Chitosan - chemistry</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>Drug Carriers - chemistry</topic><topic>Drug Carriers - metabolism</topic><topic>Drug Carriers - toxicity</topic><topic>Drug Design</topic><topic>Endocytosis</topic><topic>Exact sciences and technology</topic><topic>General pharmacology</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Intracellular Space - metabolism</topic><topic>Medical sciences</topic><topic>Methylation</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Natural polymers</topic><topic>Non-viral gene delivery</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>Physicochemistry of polymers</topic><topic>Poly(ɛ-caprolactone)</topic><topic>Polyesters - chemistry</topic><topic>Starch and polysaccharides</topic><topic>Static Electricity</topic><topic>Transfection - methods</topic><topic>Trimethylated chitosan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, San</creatorcontrib><creatorcontrib>Huang, Zhixiong</creatorcontrib><creatorcontrib>Zhang, Haiwen</creatorcontrib><creatorcontrib>Wang, Youxiang</creatorcontrib><creatorcontrib>Hu, Qiaoling</creatorcontrib><creatorcontrib>Jiang, Hongliang</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, San</au><au>Huang, Zhixiong</au><au>Zhang, Haiwen</au><au>Wang, Youxiang</au><au>Hu, Qiaoling</au><au>Jiang, Hongliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and formulation of trimethylated chitosan-graft-poly(ɛ-caprolactone) nanoparticles used for gene delivery</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2014-01-30</date><risdate>2014</risdate><volume>101</volume><spage>104</spage><epage>112</epage><pages>104-112</pages><issn>0144-8617</issn><eissn>1879-1344</eissn><coden>CAPOD8</coden><abstract>•TMC-g-PCL tightly condensed pDNA despite low molecular weight of TMC.•The uptake of gene complexes was high due to the hydrophobic modification.•The quaternization degree was an important factor for TMC-based gene vector.
The ideal gene polyplexes should have a subtle balance between polyplex stability to protect DNA against nucleases, and polyplex instability to permit DNA dissociation inside cells. In this research, low molecular weight trimethylated chitosan was chemically modified with poly(ɛ-caprolactone). Owing to the amphiphilic character, trimethylated chitosan-graft-poly(ɛ-caprolactone) (TMC-g-PCL) formed nanoparticles in aqueous media. TMC-g-PCL nanoparticles could effectively condense pDNA into polyplexes about 200nm in size. The TMC-g-PCL/DNA polyplexes were stable in physiological salt condition and showed high uptake efficiency probably due to the increasing cell membrane-carrier interaction as a result of hydrophobic modification. However, the high degree of quaternization influenced the buffer capacity of TMC-g-PCL and led to a reduction in the release from the lysosomes. By adding chloroquine to exclude the limitation of lysosome escape, the transfection efficiency of TMC-g-PCL/DNA polyplexes was similar to that of PEI/DNA polyplexes. This study demonstrated the potential of TMC-g-PCL/DNA nanoparticles as an efficient carrier for gene delivery.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>24299755</pmid><doi>10.1016/j.carbpol.2013.09.053</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0144-8617 |
ispartof | Carbohydrate polymers, 2014-01, Vol.101, p.104-112 |
issn | 0144-8617 1879-1344 |
language | eng |
recordid | cdi_proquest_miscellaneous_1465175987 |
source | ScienceDirect Freedom Collection |
subjects | Applied sciences Biological and medical sciences Chemistry, Pharmaceutical Chitosan - chemistry DNA - chemistry DNA - genetics Drug Carriers - chemistry Drug Carriers - metabolism Drug Carriers - toxicity Drug Design Endocytosis Exact sciences and technology General pharmacology HEK293 Cells Humans Hydrophobic and Hydrophilic Interactions Intracellular Space - metabolism Medical sciences Methylation Nanoparticles Nanoparticles - chemistry Natural polymers Non-viral gene delivery Pharmaceutical technology. Pharmaceutical industry Pharmacology. Drug treatments Physicochemistry of polymers Poly(ɛ-caprolactone) Polyesters - chemistry Starch and polysaccharides Static Electricity Transfection - methods Trimethylated chitosan |
title | Design and formulation of trimethylated chitosan-graft-poly(ɛ-caprolactone) nanoparticles used for gene delivery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A32%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20formulation%20of%20trimethylated%20chitosan-graft-poly(%C9%9B-caprolactone)%20nanoparticles%20used%20for%20gene%20delivery&rft.jtitle=Carbohydrate%20polymers&rft.au=Tang,%20San&rft.date=2014-01-30&rft.volume=101&rft.spage=104&rft.epage=112&rft.pages=104-112&rft.issn=0144-8617&rft.eissn=1879-1344&rft.coden=CAPOD8&rft_id=info:doi/10.1016/j.carbpol.2013.09.053&rft_dat=%3Cproquest_cross%3E1465175987%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-f91024be49b25b6f00320f36006966211c61a94d06504d6a39769bf0e760c2a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1465175987&rft_id=info:pmid/24299755&rfr_iscdi=true |