Loading…

Design and formulation of trimethylated chitosan-graft-poly(ɛ-caprolactone) nanoparticles used for gene delivery

•TMC-g-PCL tightly condensed pDNA despite low molecular weight of TMC.•The uptake of gene complexes was high due to the hydrophobic modification.•The quaternization degree was an important factor for TMC-based gene vector. The ideal gene polyplexes should have a subtle balance between polyplex stabi...

Full description

Saved in:
Bibliographic Details
Published in:Carbohydrate polymers 2014-01, Vol.101, p.104-112
Main Authors: Tang, San, Huang, Zhixiong, Zhang, Haiwen, Wang, Youxiang, Hu, Qiaoling, Jiang, Hongliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c395t-f91024be49b25b6f00320f36006966211c61a94d06504d6a39769bf0e760c2a43
cites cdi_FETCH-LOGICAL-c395t-f91024be49b25b6f00320f36006966211c61a94d06504d6a39769bf0e760c2a43
container_end_page 112
container_issue
container_start_page 104
container_title Carbohydrate polymers
container_volume 101
creator Tang, San
Huang, Zhixiong
Zhang, Haiwen
Wang, Youxiang
Hu, Qiaoling
Jiang, Hongliang
description •TMC-g-PCL tightly condensed pDNA despite low molecular weight of TMC.•The uptake of gene complexes was high due to the hydrophobic modification.•The quaternization degree was an important factor for TMC-based gene vector. The ideal gene polyplexes should have a subtle balance between polyplex stability to protect DNA against nucleases, and polyplex instability to permit DNA dissociation inside cells. In this research, low molecular weight trimethylated chitosan was chemically modified with poly(ɛ-caprolactone). Owing to the amphiphilic character, trimethylated chitosan-graft-poly(ɛ-caprolactone) (TMC-g-PCL) formed nanoparticles in aqueous media. TMC-g-PCL nanoparticles could effectively condense pDNA into polyplexes about 200nm in size. The TMC-g-PCL/DNA polyplexes were stable in physiological salt condition and showed high uptake efficiency probably due to the increasing cell membrane-carrier interaction as a result of hydrophobic modification. However, the high degree of quaternization influenced the buffer capacity of TMC-g-PCL and led to a reduction in the release from the lysosomes. By adding chloroquine to exclude the limitation of lysosome escape, the transfection efficiency of TMC-g-PCL/DNA polyplexes was similar to that of PEI/DNA polyplexes. This study demonstrated the potential of TMC-g-PCL/DNA nanoparticles as an efficient carrier for gene delivery.
doi_str_mv 10.1016/j.carbpol.2013.09.053
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1465175987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861713009454</els_id><sourcerecordid>1465175987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-f91024be49b25b6f00320f36006966211c61a94d06504d6a39769bf0e760c2a43</originalsourceid><addsrcrecordid>eNqFkd1uFCEUgInR2G31ETTcmNSLmcIMMMOVaaq1Jk16o9eEYQ5bNixsgWmyz-IT9a2k7qqXnhuSk-_8fSD0jpKWEiouNq3RadpF33aE9i2RLeH9C7Si4yAb2jP2Eq0IZawZBR1O0GnOG1JDUPIanXSsk3LgfIUePkN264B1mLGNabt4XVwMOFpckttCud_XDMzY3LsSsw7NOmlbmjp4f_70szF6l6LXpsQAH3HQIe50Ks54yHjJ8LspXkMAPIN3j5D2b9Arq32Gt8f3DP24_vL96qa5vfv67erytjG95KWxkpKOTcDk1PFJWEL6jthe1BOkEB2lRlAt2UwEJ2wWupeDkJMlMAhiOs36M3R-6FsXfFggF7V12YD3OkBcsqJMcDpwOQ4V5QfUpJhzAqt29Xad9ooS9WxbbdTRtnq2rYhU1Xate38csUxbmP9W_dFbgQ9HQGejvU06GJf_cWP9p2EcK_fpwEEV8uggqWwcBAOzS2CKmqP7zyq_AG35obM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1465175987</pqid></control><display><type>article</type><title>Design and formulation of trimethylated chitosan-graft-poly(ɛ-caprolactone) nanoparticles used for gene delivery</title><source>ScienceDirect Freedom Collection</source><creator>Tang, San ; Huang, Zhixiong ; Zhang, Haiwen ; Wang, Youxiang ; Hu, Qiaoling ; Jiang, Hongliang</creator><creatorcontrib>Tang, San ; Huang, Zhixiong ; Zhang, Haiwen ; Wang, Youxiang ; Hu, Qiaoling ; Jiang, Hongliang</creatorcontrib><description>•TMC-g-PCL tightly condensed pDNA despite low molecular weight of TMC.•The uptake of gene complexes was high due to the hydrophobic modification.•The quaternization degree was an important factor for TMC-based gene vector. The ideal gene polyplexes should have a subtle balance between polyplex stability to protect DNA against nucleases, and polyplex instability to permit DNA dissociation inside cells. In this research, low molecular weight trimethylated chitosan was chemically modified with poly(ɛ-caprolactone). Owing to the amphiphilic character, trimethylated chitosan-graft-poly(ɛ-caprolactone) (TMC-g-PCL) formed nanoparticles in aqueous media. TMC-g-PCL nanoparticles could effectively condense pDNA into polyplexes about 200nm in size. The TMC-g-PCL/DNA polyplexes were stable in physiological salt condition and showed high uptake efficiency probably due to the increasing cell membrane-carrier interaction as a result of hydrophobic modification. However, the high degree of quaternization influenced the buffer capacity of TMC-g-PCL and led to a reduction in the release from the lysosomes. By adding chloroquine to exclude the limitation of lysosome escape, the transfection efficiency of TMC-g-PCL/DNA polyplexes was similar to that of PEI/DNA polyplexes. This study demonstrated the potential of TMC-g-PCL/DNA nanoparticles as an efficient carrier for gene delivery.</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2013.09.053</identifier><identifier>PMID: 24299755</identifier><identifier>CODEN: CAPOD8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Biological and medical sciences ; Chemistry, Pharmaceutical ; Chitosan - chemistry ; DNA - chemistry ; DNA - genetics ; Drug Carriers - chemistry ; Drug Carriers - metabolism ; Drug Carriers - toxicity ; Drug Design ; Endocytosis ; Exact sciences and technology ; General pharmacology ; HEK293 Cells ; Humans ; Hydrophobic and Hydrophilic Interactions ; Intracellular Space - metabolism ; Medical sciences ; Methylation ; Nanoparticles ; Nanoparticles - chemistry ; Natural polymers ; Non-viral gene delivery ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; Physicochemistry of polymers ; Poly(ɛ-caprolactone) ; Polyesters - chemistry ; Starch and polysaccharides ; Static Electricity ; Transfection - methods ; Trimethylated chitosan</subject><ispartof>Carbohydrate polymers, 2014-01, Vol.101, p.104-112</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-f91024be49b25b6f00320f36006966211c61a94d06504d6a39769bf0e760c2a43</citedby><cites>FETCH-LOGICAL-c395t-f91024be49b25b6f00320f36006966211c61a94d06504d6a39769bf0e760c2a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28344788$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24299755$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, San</creatorcontrib><creatorcontrib>Huang, Zhixiong</creatorcontrib><creatorcontrib>Zhang, Haiwen</creatorcontrib><creatorcontrib>Wang, Youxiang</creatorcontrib><creatorcontrib>Hu, Qiaoling</creatorcontrib><creatorcontrib>Jiang, Hongliang</creatorcontrib><title>Design and formulation of trimethylated chitosan-graft-poly(ɛ-caprolactone) nanoparticles used for gene delivery</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>•TMC-g-PCL tightly condensed pDNA despite low molecular weight of TMC.•The uptake of gene complexes was high due to the hydrophobic modification.•The quaternization degree was an important factor for TMC-based gene vector. The ideal gene polyplexes should have a subtle balance between polyplex stability to protect DNA against nucleases, and polyplex instability to permit DNA dissociation inside cells. In this research, low molecular weight trimethylated chitosan was chemically modified with poly(ɛ-caprolactone). Owing to the amphiphilic character, trimethylated chitosan-graft-poly(ɛ-caprolactone) (TMC-g-PCL) formed nanoparticles in aqueous media. TMC-g-PCL nanoparticles could effectively condense pDNA into polyplexes about 200nm in size. The TMC-g-PCL/DNA polyplexes were stable in physiological salt condition and showed high uptake efficiency probably due to the increasing cell membrane-carrier interaction as a result of hydrophobic modification. However, the high degree of quaternization influenced the buffer capacity of TMC-g-PCL and led to a reduction in the release from the lysosomes. By adding chloroquine to exclude the limitation of lysosome escape, the transfection efficiency of TMC-g-PCL/DNA polyplexes was similar to that of PEI/DNA polyplexes. This study demonstrated the potential of TMC-g-PCL/DNA nanoparticles as an efficient carrier for gene delivery.</description><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Chemistry, Pharmaceutical</subject><subject>Chitosan - chemistry</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>Drug Carriers - chemistry</subject><subject>Drug Carriers - metabolism</subject><subject>Drug Carriers - toxicity</subject><subject>Drug Design</subject><subject>Endocytosis</subject><subject>Exact sciences and technology</subject><subject>General pharmacology</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Intracellular Space - metabolism</subject><subject>Medical sciences</subject><subject>Methylation</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Natural polymers</subject><subject>Non-viral gene delivery</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>Physicochemistry of polymers</subject><subject>Poly(ɛ-caprolactone)</subject><subject>Polyesters - chemistry</subject><subject>Starch and polysaccharides</subject><subject>Static Electricity</subject><subject>Transfection - methods</subject><subject>Trimethylated chitosan</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkd1uFCEUgInR2G31ETTcmNSLmcIMMMOVaaq1Jk16o9eEYQ5bNixsgWmyz-IT9a2k7qqXnhuSk-_8fSD0jpKWEiouNq3RadpF33aE9i2RLeH9C7Si4yAb2jP2Eq0IZawZBR1O0GnOG1JDUPIanXSsk3LgfIUePkN264B1mLGNabt4XVwMOFpckttCud_XDMzY3LsSsw7NOmlbmjp4f_70szF6l6LXpsQAH3HQIe50Ks54yHjJ8LspXkMAPIN3j5D2b9Arq32Gt8f3DP24_vL96qa5vfv67erytjG95KWxkpKOTcDk1PFJWEL6jthe1BOkEB2lRlAt2UwEJ2wWupeDkJMlMAhiOs36M3R-6FsXfFggF7V12YD3OkBcsqJMcDpwOQ4V5QfUpJhzAqt29Xad9ooS9WxbbdTRtnq2rYhU1Xate38csUxbmP9W_dFbgQ9HQGejvU06GJf_cWP9p2EcK_fpwEEV8uggqWwcBAOzS2CKmqP7zyq_AG35obM</recordid><startdate>20140130</startdate><enddate>20140130</enddate><creator>Tang, San</creator><creator>Huang, Zhixiong</creator><creator>Zhang, Haiwen</creator><creator>Wang, Youxiang</creator><creator>Hu, Qiaoling</creator><creator>Jiang, Hongliang</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140130</creationdate><title>Design and formulation of trimethylated chitosan-graft-poly(ɛ-caprolactone) nanoparticles used for gene delivery</title><author>Tang, San ; Huang, Zhixiong ; Zhang, Haiwen ; Wang, Youxiang ; Hu, Qiaoling ; Jiang, Hongliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-f91024be49b25b6f00320f36006966211c61a94d06504d6a39769bf0e760c2a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Chemistry, Pharmaceutical</topic><topic>Chitosan - chemistry</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>Drug Carriers - chemistry</topic><topic>Drug Carriers - metabolism</topic><topic>Drug Carriers - toxicity</topic><topic>Drug Design</topic><topic>Endocytosis</topic><topic>Exact sciences and technology</topic><topic>General pharmacology</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Intracellular Space - metabolism</topic><topic>Medical sciences</topic><topic>Methylation</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Natural polymers</topic><topic>Non-viral gene delivery</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>Physicochemistry of polymers</topic><topic>Poly(ɛ-caprolactone)</topic><topic>Polyesters - chemistry</topic><topic>Starch and polysaccharides</topic><topic>Static Electricity</topic><topic>Transfection - methods</topic><topic>Trimethylated chitosan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, San</creatorcontrib><creatorcontrib>Huang, Zhixiong</creatorcontrib><creatorcontrib>Zhang, Haiwen</creatorcontrib><creatorcontrib>Wang, Youxiang</creatorcontrib><creatorcontrib>Hu, Qiaoling</creatorcontrib><creatorcontrib>Jiang, Hongliang</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, San</au><au>Huang, Zhixiong</au><au>Zhang, Haiwen</au><au>Wang, Youxiang</au><au>Hu, Qiaoling</au><au>Jiang, Hongliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and formulation of trimethylated chitosan-graft-poly(ɛ-caprolactone) nanoparticles used for gene delivery</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2014-01-30</date><risdate>2014</risdate><volume>101</volume><spage>104</spage><epage>112</epage><pages>104-112</pages><issn>0144-8617</issn><eissn>1879-1344</eissn><coden>CAPOD8</coden><abstract>•TMC-g-PCL tightly condensed pDNA despite low molecular weight of TMC.•The uptake of gene complexes was high due to the hydrophobic modification.•The quaternization degree was an important factor for TMC-based gene vector. The ideal gene polyplexes should have a subtle balance between polyplex stability to protect DNA against nucleases, and polyplex instability to permit DNA dissociation inside cells. In this research, low molecular weight trimethylated chitosan was chemically modified with poly(ɛ-caprolactone). Owing to the amphiphilic character, trimethylated chitosan-graft-poly(ɛ-caprolactone) (TMC-g-PCL) formed nanoparticles in aqueous media. TMC-g-PCL nanoparticles could effectively condense pDNA into polyplexes about 200nm in size. The TMC-g-PCL/DNA polyplexes were stable in physiological salt condition and showed high uptake efficiency probably due to the increasing cell membrane-carrier interaction as a result of hydrophobic modification. However, the high degree of quaternization influenced the buffer capacity of TMC-g-PCL and led to a reduction in the release from the lysosomes. By adding chloroquine to exclude the limitation of lysosome escape, the transfection efficiency of TMC-g-PCL/DNA polyplexes was similar to that of PEI/DNA polyplexes. This study demonstrated the potential of TMC-g-PCL/DNA nanoparticles as an efficient carrier for gene delivery.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>24299755</pmid><doi>10.1016/j.carbpol.2013.09.053</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0144-8617
ispartof Carbohydrate polymers, 2014-01, Vol.101, p.104-112
issn 0144-8617
1879-1344
language eng
recordid cdi_proquest_miscellaneous_1465175987
source ScienceDirect Freedom Collection
subjects Applied sciences
Biological and medical sciences
Chemistry, Pharmaceutical
Chitosan - chemistry
DNA - chemistry
DNA - genetics
Drug Carriers - chemistry
Drug Carriers - metabolism
Drug Carriers - toxicity
Drug Design
Endocytosis
Exact sciences and technology
General pharmacology
HEK293 Cells
Humans
Hydrophobic and Hydrophilic Interactions
Intracellular Space - metabolism
Medical sciences
Methylation
Nanoparticles
Nanoparticles - chemistry
Natural polymers
Non-viral gene delivery
Pharmaceutical technology. Pharmaceutical industry
Pharmacology. Drug treatments
Physicochemistry of polymers
Poly(ɛ-caprolactone)
Polyesters - chemistry
Starch and polysaccharides
Static Electricity
Transfection - methods
Trimethylated chitosan
title Design and formulation of trimethylated chitosan-graft-poly(ɛ-caprolactone) nanoparticles used for gene delivery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A32%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20formulation%20of%20trimethylated%20chitosan-graft-poly(%C9%9B-caprolactone)%20nanoparticles%20used%20for%20gene%20delivery&rft.jtitle=Carbohydrate%20polymers&rft.au=Tang,%20San&rft.date=2014-01-30&rft.volume=101&rft.spage=104&rft.epage=112&rft.pages=104-112&rft.issn=0144-8617&rft.eissn=1879-1344&rft.coden=CAPOD8&rft_id=info:doi/10.1016/j.carbpol.2013.09.053&rft_dat=%3Cproquest_cross%3E1465175987%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-f91024be49b25b6f00320f36006966211c61a94d06504d6a39769bf0e760c2a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1465175987&rft_id=info:pmid/24299755&rfr_iscdi=true