Loading…
The role of transmembrane electrochemical potential and phosphorylation of PS II proteins in temperature induced light emission from ATP-treated lettuce thylakoids
Changes in characteristics of flash-induced thermoluminescence (TL) glow curves in thylakoids of lettuce following incubation of the organelles with ATP, under illumination or in the dark, were investigated. TL bands were induced by 1 or 2 flashes fired at -10°C or 1°C in thylakoids: TL curves in co...
Saved in:
Published in: | Photosynthesis research 1996-03, Vol.47 (3), p.219-230 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Changes in characteristics of flash-induced thermoluminescence (TL) glow curves in thylakoids of lettuce following incubation of the organelles with ATP, under illumination or in the dark, were investigated. TL bands were induced by 1 or 2 flashes fired at -10°C or 1°C in thylakoids: TL curves in control thylakoids which were dark-adapted or submitted to an illumination without ATP, can be deconvoluted as the sum of one single B band and minor contributions. In thylakoids incubated for 90 s with 0.5 mM ATP, either under light or in the dark (after a 90 s preillumination), bands presented complex shapes; after deconvolution, they appeared composed of a B band with a low Ea (activation energy): 0.6 e.v. as compared to 0.75 in control, and a supplementary band peaking at about 10°C. The band at low temperature was suppressed by low concentrations (10-20 nM) of valinomycin, nigericin or FCCP as well as by 10 mM ammonium chloride, leaving B bands with the same characteristics as in control material. Finally with higher nigericin concentrations, the bands became single B bands with high Ea (0.9 e.v.). These characteristics would define 3 different energized states (in the form of a transmembrane electrochemical potential) for thylakoids based upon the presence of the 10°C band and the value of the activation energy for the B band component. The presence of a large 10°C band was also correlated to the existence of a larger transmembrane pH gradient, in the dark, after an ATP-treatment, than in controls. The 10°C band was specifically suppressed by the action of low concentrations of alkaline phosphatase with minor changes in characteristics of the remaining B band suggesting that phosphorylation of PS II proteins is also involved in the appearance of this low temperature band. The main mechanism at the origin of the low temperature band would be a destabilization of S2/3QB (-) charge pairs in energized membranes. |
---|---|
ISSN: | 0166-8595 1573-5079 |
DOI: | 10.1007/BF02184283 |