Loading…

Xylan synthetase activity in differentiated xylem cells of sycamore trees (Acer pseudoplatanus)

Particulate enzymic preparations obtained from homogenates of differentiated xylem cells isolated from sycamore trees, catalyzed the formation of a radioactive xylan in the presence of UDP-D-[U-14C]xylose as substrate. The synthesized xylan was not dialyzable through Visking cellophane tubing. Succe...

Full description

Saved in:
Bibliographic Details
Published in:Planta 1981, Vol.151 (1), p.53-60
Main Authors: Dalessandro, G, Northcote, D.H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Particulate enzymic preparations obtained from homogenates of differentiated xylem cells isolated from sycamore trees, catalyzed the formation of a radioactive xylan in the presence of UDP-D-[U-14C]xylose as substrate. The synthesized xylan was not dialyzable through Visking cellophane tubing. Successive extraction with cold water, hot water and 5% NaOH dissolved respectively 15, 5 and 80% of the radioactive polymer. Complete acid hydrolysis of the water-insoluble polysaccharide synthesized from UDP-D-[U-14C]xylose released all the radioactivity as xylose. β-1,4-Xylodextrins, degree of polymerization 2, 3, 4, 5 and 6, were obtained by partial acid hydrolysis (fuming HCl or 0.1 M HCl) of radioactive xylan. The polymer was hydrolysed to xylose, xylobiose and xylotriose by Driselase which contains 1,4-β xylanase activities. Methylation and then hydrolysis of the xylan released two methylated sugars which were identified as di-O-methyl[14C]xylose and tri-O-methyl[14C]xylose, suggesting a 1 → 4-linked polymer. The linkage was confirmed by periodate oxidation studies. The apparent Km value of the synthetase for UDP-D-xylose was 0.4 mM. Xylan synthetase activity was not potentiated in the presence of a detergent. The enzymic activity was stimulated by Mg2+ and Mn2+ ions, although EDTA in the range of concentrations between 0.01 and 1 mM did not affect the reaction rate. It appears that the xylan synthetase system associated with membranes obtained from differentiated xylem cells of sycamore trees may serve for catalyzing the in vivo synthesis of the xylan main chain during the biogenesis of the plant cell wall.
ISSN:0032-0935
1432-2048
DOI:10.1007/BF00384237