Loading…

Energy balance model of a SOFC cogenerator operated with biogas

A small cogeneration system based on a Solid Oxide Fuel Cell (SOFC) fed on the renewable energy source biogas is presented. An existing farm biogas production site (35 m 3 per day), currently equipped with a SOFC demonstration stack, is taken for reference. A process flow diagram was defined in a so...

Full description

Saved in:
Bibliographic Details
Published in:Journal of power sources 2003-05, Vol.118 (1), p.375-383
Main Authors: Van herle, Jan, Maréchal, F., Leuenberger, S., Favrat, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c420t-820086055a7db73ac8a85249fa86764cd817a783ab10ceb7bc45b0e750a612863
cites cdi_FETCH-LOGICAL-c420t-820086055a7db73ac8a85249fa86764cd817a783ab10ceb7bc45b0e750a612863
container_end_page 383
container_issue 1
container_start_page 375
container_title Journal of power sources
container_volume 118
creator Van herle, Jan
Maréchal, F.
Leuenberger, S.
Favrat, D.
description A small cogeneration system based on a Solid Oxide Fuel Cell (SOFC) fed on the renewable energy source biogas is presented. An existing farm biogas production site (35 m 3 per day), currently equipped with a SOFC demonstration stack, is taken for reference. A process flow diagram was defined in a software package allowing to vary system operating parameters like the fuel inlet composition, reforming technology, stack temperature and stack current (or fuel conversion). For system reforming simplicity, a base case parameter set was defined as the fuel inlet of 60% CH 4:40% CO 2 mixed with air in a 1:1 ratio, together with 800 °C operating temperature and 80% fuel conversion. A model stack, consisting of 100 series elements of anode supported electrolyte cells of 100 cm 2 each, was calculated to deliver 3.1 kW el and 5.16 kW th from an input of 1.5 N m 3/h of biogas (8.95 kW LHV), corresponding to 33.8 and 57.6% electrical and thermal efficiencies (Lower Heating Values (LHVs)), respectively. The incidence on the efficiencies of the model system was examined by the variation of a number of parameters such as the CO 2 content in the biogas, the amount of air addition to the biogas stream, the addition of steam to the fuel inlet, the air excess ratio λ and the stack operating temperature, and the results discussed.
doi_str_mv 10.1016/S0378-7753(03)00103-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_14662489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775303001034</els_id><sourcerecordid>14662489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-820086055a7db73ac8a85249fa86764cd817a783ab10ceb7bc45b0e750a612863</originalsourceid><addsrcrecordid>eNqFkEtLAzEQgIMoWKs_QchF0cPqZPPsqUhpVSj0UD2HbDZbI9umJlul_960FT0KAzOHb14fQpcE7ggQcT8HKlUhJac3QG8BCNCCHaEeUZIWpeT8GPV-kVN0ltI7ZIpI6KHheOXiYosr05qVdXgZatfi0GCD57PJCNuwcJkwXYg4rHeFq_GX795w5cPCpHN00pg2uYuf3Eevk_HL6KmYzh6fRw_TwrISukKVAEoA50bWlaTGKqN4yQaNUUIKZmtFpJGKmoqAdZWsLOMVOMnBCFIqQfvo-jB3HcPHxqVOL32yrs1Xu7BJmjAhSqYGGeQH0MaQUnSNXke_NHGrCeidLr3XpXcuNOTY6dIs9139LDDJmraJWYdPf80sH0H384cHzuVvP72LOlnvsrraR2c7XQf_z6ZvWed8zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14662489</pqid></control><display><type>article</type><title>Energy balance model of a SOFC cogenerator operated with biogas</title><source>ScienceDirect Freedom Collection</source><creator>Van herle, Jan ; Maréchal, F. ; Leuenberger, S. ; Favrat, D.</creator><creatorcontrib>Van herle, Jan ; Maréchal, F. ; Leuenberger, S. ; Favrat, D.</creatorcontrib><description>A small cogeneration system based on a Solid Oxide Fuel Cell (SOFC) fed on the renewable energy source biogas is presented. An existing farm biogas production site (35 m 3 per day), currently equipped with a SOFC demonstration stack, is taken for reference. A process flow diagram was defined in a software package allowing to vary system operating parameters like the fuel inlet composition, reforming technology, stack temperature and stack current (or fuel conversion). For system reforming simplicity, a base case parameter set was defined as the fuel inlet of 60% CH 4:40% CO 2 mixed with air in a 1:1 ratio, together with 800 °C operating temperature and 80% fuel conversion. A model stack, consisting of 100 series elements of anode supported electrolyte cells of 100 cm 2 each, was calculated to deliver 3.1 kW el and 5.16 kW th from an input of 1.5 N m 3/h of biogas (8.95 kW LHV), corresponding to 33.8 and 57.6% electrical and thermal efficiencies (Lower Heating Values (LHVs)), respectively. The incidence on the efficiencies of the model system was examined by the variation of a number of parameters such as the CO 2 content in the biogas, the amount of air addition to the biogas stream, the addition of steam to the fuel inlet, the air excess ratio λ and the stack operating temperature, and the results discussed.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/S0378-7753(03)00103-4</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Biogas fuel ; Combined power plants ; Efficiency ; Energy ; Energy balance ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Installations for energy generation and conversion: thermal and electrical energy ; SOFC stack model</subject><ispartof>Journal of power sources, 2003-05, Vol.118 (1), p.375-383</ispartof><rights>2003 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-820086055a7db73ac8a85249fa86764cd817a783ab10ceb7bc45b0e750a612863</citedby><cites>FETCH-LOGICAL-c420t-820086055a7db73ac8a85249fa86764cd817a783ab10ceb7bc45b0e750a612863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14863389$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Van herle, Jan</creatorcontrib><creatorcontrib>Maréchal, F.</creatorcontrib><creatorcontrib>Leuenberger, S.</creatorcontrib><creatorcontrib>Favrat, D.</creatorcontrib><title>Energy balance model of a SOFC cogenerator operated with biogas</title><title>Journal of power sources</title><description>A small cogeneration system based on a Solid Oxide Fuel Cell (SOFC) fed on the renewable energy source biogas is presented. An existing farm biogas production site (35 m 3 per day), currently equipped with a SOFC demonstration stack, is taken for reference. A process flow diagram was defined in a software package allowing to vary system operating parameters like the fuel inlet composition, reforming technology, stack temperature and stack current (or fuel conversion). For system reforming simplicity, a base case parameter set was defined as the fuel inlet of 60% CH 4:40% CO 2 mixed with air in a 1:1 ratio, together with 800 °C operating temperature and 80% fuel conversion. A model stack, consisting of 100 series elements of anode supported electrolyte cells of 100 cm 2 each, was calculated to deliver 3.1 kW el and 5.16 kW th from an input of 1.5 N m 3/h of biogas (8.95 kW LHV), corresponding to 33.8 and 57.6% electrical and thermal efficiencies (Lower Heating Values (LHVs)), respectively. The incidence on the efficiencies of the model system was examined by the variation of a number of parameters such as the CO 2 content in the biogas, the amount of air addition to the biogas stream, the addition of steam to the fuel inlet, the air excess ratio λ and the stack operating temperature, and the results discussed.</description><subject>Applied sciences</subject><subject>Biogas fuel</subject><subject>Combined power plants</subject><subject>Efficiency</subject><subject>Energy</subject><subject>Energy balance</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>SOFC stack model</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEQgIMoWKs_QchF0cPqZPPsqUhpVSj0UD2HbDZbI9umJlul_960FT0KAzOHb14fQpcE7ggQcT8HKlUhJac3QG8BCNCCHaEeUZIWpeT8GPV-kVN0ltI7ZIpI6KHheOXiYosr05qVdXgZatfi0GCD57PJCNuwcJkwXYg4rHeFq_GX795w5cPCpHN00pg2uYuf3Eevk_HL6KmYzh6fRw_TwrISukKVAEoA50bWlaTGKqN4yQaNUUIKZmtFpJGKmoqAdZWsLOMVOMnBCFIqQfvo-jB3HcPHxqVOL32yrs1Xu7BJmjAhSqYGGeQH0MaQUnSNXke_NHGrCeidLr3XpXcuNOTY6dIs9139LDDJmraJWYdPf80sH0H384cHzuVvP72LOlnvsrraR2c7XQf_z6ZvWed8zA</recordid><startdate>20030525</startdate><enddate>20030525</enddate><creator>Van herle, Jan</creator><creator>Maréchal, F.</creator><creator>Leuenberger, S.</creator><creator>Favrat, D.</creator><general>Elsevier B.V</general><general>Elsevier Sequoia</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20030525</creationdate><title>Energy balance model of a SOFC cogenerator operated with biogas</title><author>Van herle, Jan ; Maréchal, F. ; Leuenberger, S. ; Favrat, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-820086055a7db73ac8a85249fa86764cd817a783ab10ceb7bc45b0e750a612863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Biogas fuel</topic><topic>Combined power plants</topic><topic>Efficiency</topic><topic>Energy</topic><topic>Energy balance</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>SOFC stack model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van herle, Jan</creatorcontrib><creatorcontrib>Maréchal, F.</creatorcontrib><creatorcontrib>Leuenberger, S.</creatorcontrib><creatorcontrib>Favrat, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van herle, Jan</au><au>Maréchal, F.</au><au>Leuenberger, S.</au><au>Favrat, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy balance model of a SOFC cogenerator operated with biogas</atitle><jtitle>Journal of power sources</jtitle><date>2003-05-25</date><risdate>2003</risdate><volume>118</volume><issue>1</issue><spage>375</spage><epage>383</epage><pages>375-383</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>A small cogeneration system based on a Solid Oxide Fuel Cell (SOFC) fed on the renewable energy source biogas is presented. An existing farm biogas production site (35 m 3 per day), currently equipped with a SOFC demonstration stack, is taken for reference. A process flow diagram was defined in a software package allowing to vary system operating parameters like the fuel inlet composition, reforming technology, stack temperature and stack current (or fuel conversion). For system reforming simplicity, a base case parameter set was defined as the fuel inlet of 60% CH 4:40% CO 2 mixed with air in a 1:1 ratio, together with 800 °C operating temperature and 80% fuel conversion. A model stack, consisting of 100 series elements of anode supported electrolyte cells of 100 cm 2 each, was calculated to deliver 3.1 kW el and 5.16 kW th from an input of 1.5 N m 3/h of biogas (8.95 kW LHV), corresponding to 33.8 and 57.6% electrical and thermal efficiencies (Lower Heating Values (LHVs)), respectively. The incidence on the efficiencies of the model system was examined by the variation of a number of parameters such as the CO 2 content in the biogas, the amount of air addition to the biogas stream, the addition of steam to the fuel inlet, the air excess ratio λ and the stack operating temperature, and the results discussed.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/S0378-7753(03)00103-4</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2003-05, Vol.118 (1), p.375-383
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_14662489
source ScienceDirect Freedom Collection
subjects Applied sciences
Biogas fuel
Combined power plants
Efficiency
Energy
Energy balance
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
Installations for energy generation and conversion: thermal and electrical energy
SOFC stack model
title Energy balance model of a SOFC cogenerator operated with biogas
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A42%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20balance%20model%20of%20a%20SOFC%20cogenerator%20operated%20with%20biogas&rft.jtitle=Journal%20of%20power%20sources&rft.au=Van%20herle,%20Jan&rft.date=2003-05-25&rft.volume=118&rft.issue=1&rft.spage=375&rft.epage=383&rft.pages=375-383&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/S0378-7753(03)00103-4&rft_dat=%3Cproquest_cross%3E14662489%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-820086055a7db73ac8a85249fa86764cd817a783ab10ceb7bc45b0e750a612863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=14662489&rft_id=info:pmid/&rfr_iscdi=true