Loading…

Effect of Gold Nanoparticles on Production of Reactive Oxygen Species by Human Peripheral Blood Leukocytes Stimulated with Opsonized Zymosan

We studied the effect of gold nanoparticles on ROS production by leukocytes. ROS production was detected by luminol-dependent chemiluminescence (LDCL) of human peripheral blood leukocytes stimulated with opsonized zymosan. Nanoparticle size was 5, 10 and 30 nm. Simultaneous addition of nanoparticles...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of experimental biology and medicine 2013-11, Vol.156 (1), p.101-103
Main Authors: Piryazev, A. P., Azizova, O. A., Aseichev, A. V., Dudnik, L. B., Sergienko, V. I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We studied the effect of gold nanoparticles on ROS production by leukocytes. ROS production was detected by luminol-dependent chemiluminescence (LDCL) of human peripheral blood leukocytes stimulated with opsonized zymosan. Nanoparticle size was 5, 10 and 30 nm. Simultaneous addition of nanoparticles and opsonized zymosan showed that 5-nm nanoparticles inhibited LDCL intensity in comparison with the control, when LDCL recording was conducted in the presence of opsonized zymosan. Increasing nanoparticle size from 5 up to 30 nm enhanced LDCL intensity. Preincubation of gold nanoparticles with autologous blood plasma increased LDCL intensity. In the control (without gold nanoparticles), blood plasma produced no activating effect on LDCL. We found that the effect of gold nanoparticles on leukocyte LDCL depended on nanoparticle size: 10- and 30-nm nanoparticles inhibited LDCL intensity in comparison with the control (incubation in the absence of nanoparticles) irrespective of the duration of incubation, while 5-nm gold nanoparticles had no effect on LDCL intensity. Incubation of gold nanoparticles with autologous plasma increased LDCL intensity if nanoparticle size was 30 and 10 nm.
ISSN:0007-4888
1573-8221
DOI:10.1007/s10517-013-2288-9