Loading…

The effective size of the solar cone for solar concentrating systems

In this paper we define a virtual solar cone, whose principle axis is aligned with the solar vector, having a radial angular displacement containing a pre-defined proportion of the terrestrial solar radiation. By simulating various sunshape profiles, the angular extent of the energy distribution is...

Full description

Saved in:
Bibliographic Details
Published in:Solar energy 2003-01, Vol.74 (5), p.417-427
Main Authors: Buie, D., Dey, C.J., Bosi, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we define a virtual solar cone, whose principle axis is aligned with the solar vector, having a radial angular displacement containing a pre-defined proportion of the terrestrial solar radiation. By simulating various sunshape profiles, the angular extent of the energy distribution is established to give the effective size of the solar cone for a range of atmospheric conditions. Then, by simulating the reflection of these solar distributions off a set of non-ideal mirrored surfaces, accounting for non-specular reflection and mirror shape errors, the combined effect of sunshape and mirror properties on the solar image is obtained. Clear trends are presented that show the dependence of the effective size of the solar image on the accuracy of a mirrored surface for different sunshapes. We then identify the effective size of the solar image at the absorber plane that must be accommodated in the design and optimisation of solar concentrating systems.
ISSN:0038-092X
1471-1257
DOI:10.1016/S0038-092X(03)00156-7