Loading…
The effective size of the solar cone for solar concentrating systems
In this paper we define a virtual solar cone, whose principle axis is aligned with the solar vector, having a radial angular displacement containing a pre-defined proportion of the terrestrial solar radiation. By simulating various sunshape profiles, the angular extent of the energy distribution is...
Saved in:
Published in: | Solar energy 2003-01, Vol.74 (5), p.417-427 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we define a virtual solar cone, whose principle axis is aligned with the solar vector, having a radial angular displacement containing a pre-defined proportion of the terrestrial solar radiation. By simulating various sunshape profiles, the angular extent of the energy distribution is established to give the effective size of the solar cone for a range of atmospheric conditions. Then, by simulating the reflection of these solar distributions off a set of non-ideal mirrored surfaces, accounting for non-specular reflection and mirror shape errors, the combined effect of sunshape and mirror properties on the solar image is obtained. Clear trends are presented that show the dependence of the effective size of the solar image on the accuracy of a mirrored surface for different sunshapes. We then identify the effective size of the solar image at the absorber plane that must be accommodated in the design and optimisation of solar concentrating systems. |
---|---|
ISSN: | 0038-092X 1471-1257 |
DOI: | 10.1016/S0038-092X(03)00156-7 |