Loading…

Divergent Control of Two Type VI Secretion Systems by RpoN in Pseudomonas aeruginosa: e76030

Three Type VI Secretion System (T6SS) loci called H1- to H3-T6SS coexist in Pseudomonas aeruginosa. H1-T6SS targets prokaryotic cells whereas H2-T6SS mediates interactions with both eukaryotic and prokaryotic host cells. Little is known about the third system, except that it may be connected to H2-T...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2013-10, Vol.8 (10)
Main Authors: Sana, Thibault G, Soscia, Chantal, Tonglet, Celine M, Garvis, Steve, Bleves, Sophie
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Three Type VI Secretion System (T6SS) loci called H1- to H3-T6SS coexist in Pseudomonas aeruginosa. H1-T6SS targets prokaryotic cells whereas H2-T6SS mediates interactions with both eukaryotic and prokaryotic host cells. Little is known about the third system, except that it may be connected to H2-T6SS during the host infection. Here we show that H3-T6SS is required for P. aeruginosa PAO1 virulence in the worm model. We demonstrate that the two putative H3-T6SS operons, called "left" and "right", are coregulated with H2-T6SS by the Las and Rhl Quorum Sensing systems. Interestingly, the RpoN sigma 54 factor has divergent effects on the three operons. As for many T6SSs, RpoN activates the expression of H3-T6SS left. However, RpoN unexpectedly represses the expression of H3-T6SS right and also H2-T6SS. Sfa2 and Sfa3 are putative enhancer binding proteins encoded on H2-T6SS and H3-T6SS left. In other T6SSs EBPs can act as sigma 54 activators to promote T6SS transcription. Strikingly, we found that the RpoN effects of H3-T6SS are Sfa-independent while the RpoN mediated repression of H2-T6SS is Sfa2-dependent. This is the first example of RpoN repression of a T6SS being mediated by a T6SS-encoded EBP.
ISSN:1932-6203
DOI:10.1371/journal.pone.0076030