Loading…

Whole transcriptome sequencing reveals genes involved in plastid/chloroplast division and development are regulated by the HP1/DDB1 at an early stage of tomato fruit development

The phenotype of tomato high pigment-1 (hp1) mutant is characterized by overproduction of pigments including chlorophyll and carotenoids during fruit development and ripening. Although the increased plastid compartment size has been thought to largely attribute to the enhanced pigmentation, the mole...

Full description

Saved in:
Bibliographic Details
Published in:Planta 2013-11, Vol.238 (5), p.923-936
Main Authors: Tang, Xiaofeng, Tang, Zizhi, Huang, Shengxiong, Liu, Jikai, Liu, Jia, Shi, Wei, Tian, Xuefen, Li, Yuxiang, Zhang, Danfeng, Yang, Jian, Gao, Yongfeng, Zeng, Deer, Hou, Pei, Niu, Xiangli, Cao, Ying, Li, Guangwei, Li, Xiao, Xiao, Fangming, Liu, Yongsheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-c92b5a0f4ff0c3581f968a85afb4a0323037d413a8c35b9d45d5548b6955c91e3
cites cdi_FETCH-LOGICAL-c451t-c92b5a0f4ff0c3581f968a85afb4a0323037d413a8c35b9d45d5548b6955c91e3
container_end_page 936
container_issue 5
container_start_page 923
container_title Planta
container_volume 238
creator Tang, Xiaofeng
Tang, Zizhi
Huang, Shengxiong
Liu, Jikai
Liu, Jia
Shi, Wei
Tian, Xuefen
Li, Yuxiang
Zhang, Danfeng
Yang, Jian
Gao, Yongfeng
Zeng, Deer
Hou, Pei
Niu, Xiangli
Cao, Ying
Li, Guangwei
Li, Xiao
Xiao, Fangming
Liu, Yongsheng
description The phenotype of tomato high pigment-1 (hp1) mutant is characterized by overproduction of pigments including chlorophyll and carotenoids during fruit development and ripening. Although the increased plastid compartment size has been thought to largely attribute to the enhanced pigmentation, the molecular aspects of how the HP1/DDB1 gene manipulates plastid biogenesis and development are largely unknown. In the present study, we compared transcriptome profiles of immature fruit pericarp tissue between tomato cv. Ailsa Craig (WT) and its isogenic hp1 mutant. Over 20 million sequence reads, representing > 1.6 Gb sequence data per sample, were generated and assembled into 21,972 and 22,167 gene models in WT and hp1, respectively, accounting for over 60 % official gene models in both samples. Subsequent analyses revealed that 8,322 and 7,989 alternative splicing events, 8833 or 8510 extended 5′-UTRs, 8,263 or 8,939 extended 3′-UTRs, and 1,136 and 1,133 novel transcripts, exist in WT and hp1, respectively. Significant differences in expression level of 880 genes were detected between the WT and hp1, many of which are involved in signaling transduction, transcription regulation and biotic and abiotic stresses response. Distinctly, RNA-seq datasets, quantitative RT-PCR analyses demonstrate that, in hp1 mutant pericarp tissue at early developmental stage, an apparent expression alteration was found in several regulators directly involved in plastid division and development. These results provide a useful reference for a more accurate and more detailed characterization of the molecular process in the development and pigmentation of tomato fruits.
doi_str_mv 10.1007/s00425-013-1942-9
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1468359895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43564027</jstor_id><sourcerecordid>43564027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-c92b5a0f4ff0c3581f968a85afb4a0323037d413a8c35b9d45d5548b6955c91e3</originalsourceid><addsrcrecordid>eNqNktFuFCEUhidGY7fVB_BCJfHGm3FhgFm41FatSRNNtPGSMDNnZtnMwhaYTfaxfMOedWrTeGHkBsj5_p8DP0XxgtF3jNLVMlEqKllSxkumRVXqR8WCCV6VFRXqcbGgFNdUc3lSnKa0oRSLq9XT4qTiWihF2aL49XMdRiA5Wp_a6HY5bIEkuJnAt84PJMIe7JjIAB4ScX4fxj10uCC70absumW7HkMMv3ekc3uXXPDE-o50KB3Dbgs-ExsBrYZptBnVzYHkNZDLb2x5cfGBEYuAJ2DjeCAp2wFI6Al2YnMgfZxcfuj1rHjSY0fw_G4-K64_ffxxflleff385fz9VdkKyXLZ6qqRlvai72nLpWK9rpVV0vaNsPgunPJVJxi3CquN7oTspBSqqbWUrWbAz4q3s-8uBnyOlM3WpRbG0XoIUzJM1IpLrbT8D1RIzWquV4i--QvdhCl6vMiREgr70gIpNlNtDClF6M0uuq2NB8OoOUZv5ugNRm-O0RuNmld3zlOzhe5e8SdrBKoZSFjyA8QHR__D9eUs2qQc4r2p4LIWtDre5_Vc720wdogumevvFX40ikNyWvNb4I7NyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1444823094</pqid></control><display><type>article</type><title>Whole transcriptome sequencing reveals genes involved in plastid/chloroplast division and development are regulated by the HP1/DDB1 at an early stage of tomato fruit development</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Springer Nature</source><creator>Tang, Xiaofeng ; Tang, Zizhi ; Huang, Shengxiong ; Liu, Jikai ; Liu, Jia ; Shi, Wei ; Tian, Xuefen ; Li, Yuxiang ; Zhang, Danfeng ; Yang, Jian ; Gao, Yongfeng ; Zeng, Deer ; Hou, Pei ; Niu, Xiangli ; Cao, Ying ; Li, Guangwei ; Li, Xiao ; Xiao, Fangming ; Liu, Yongsheng</creator><creatorcontrib>Tang, Xiaofeng ; Tang, Zizhi ; Huang, Shengxiong ; Liu, Jikai ; Liu, Jia ; Shi, Wei ; Tian, Xuefen ; Li, Yuxiang ; Zhang, Danfeng ; Yang, Jian ; Gao, Yongfeng ; Zeng, Deer ; Hou, Pei ; Niu, Xiangli ; Cao, Ying ; Li, Guangwei ; Li, Xiao ; Xiao, Fangming ; Liu, Yongsheng</creatorcontrib><description>The phenotype of tomato high pigment-1 (hp1) mutant is characterized by overproduction of pigments including chlorophyll and carotenoids during fruit development and ripening. Although the increased plastid compartment size has been thought to largely attribute to the enhanced pigmentation, the molecular aspects of how the HP1/DDB1 gene manipulates plastid biogenesis and development are largely unknown. In the present study, we compared transcriptome profiles of immature fruit pericarp tissue between tomato cv. Ailsa Craig (WT) and its isogenic hp1 mutant. Over 20 million sequence reads, representing &gt; 1.6 Gb sequence data per sample, were generated and assembled into 21,972 and 22,167 gene models in WT and hp1, respectively, accounting for over 60 % official gene models in both samples. Subsequent analyses revealed that 8,322 and 7,989 alternative splicing events, 8833 or 8510 extended 5′-UTRs, 8,263 or 8,939 extended 3′-UTRs, and 1,136 and 1,133 novel transcripts, exist in WT and hp1, respectively. Significant differences in expression level of 880 genes were detected between the WT and hp1, many of which are involved in signaling transduction, transcription regulation and biotic and abiotic stresses response. Distinctly, RNA-seq datasets, quantitative RT-PCR analyses demonstrate that, in hp1 mutant pericarp tissue at early developmental stage, an apparent expression alteration was found in several regulators directly involved in plastid division and development. These results provide a useful reference for a more accurate and more detailed characterization of the molecular process in the development and pigmentation of tomato fruits.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-013-1942-9</identifier><identifier>PMID: 23948801</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>3' Untranslated Regions - genetics ; 5' Untranslated Regions - genetics ; Agriculture ; alternative splicing ; Alternative Splicing - genetics ; Biomedical and Life Sciences ; Carotenoids ; chlorophyll ; Chlorophylls ; Chloroplasts ; data collection ; Developmental stages ; early development ; Ecology ; Exons ; Forestry ; Fruit - genetics ; Fruit - growth &amp; development ; fruiting ; Fruits ; Gene Expression Regulation, Developmental ; Gene Expression Regulation, Plant ; Gene Ontology ; Genes ; Genes, Plant - genetics ; Genomes ; Life Sciences ; Lycopersicon esculentum ; Lycopersicon esculentum - genetics ; Lycopersicon esculentum - growth &amp; development ; Molecular Sequence Annotation ; mutants ; Original Article ; pericarp ; phenotype ; Pigmentation ; pigments ; Plant cells ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Sciences ; Plants ; Plastids ; Plastids - genetics ; Reproducibility of Results ; Reverse Transcriptase Polymerase Chain Reaction ; ripening ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Sequence Analysis, RNA ; Tomatoes ; transcription (genetics) ; Transcription, Genetic ; transcriptome ; Transcriptome - genetics ; Untranslated regions</subject><ispartof>Planta, 2013-11, Vol.238 (5), p.923-936</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-c92b5a0f4ff0c3581f968a85afb4a0323037d413a8c35b9d45d5548b6955c91e3</citedby><cites>FETCH-LOGICAL-c451t-c92b5a0f4ff0c3581f968a85afb4a0323037d413a8c35b9d45d5548b6955c91e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43564027$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43564027$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23948801$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Xiaofeng</creatorcontrib><creatorcontrib>Tang, Zizhi</creatorcontrib><creatorcontrib>Huang, Shengxiong</creatorcontrib><creatorcontrib>Liu, Jikai</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Shi, Wei</creatorcontrib><creatorcontrib>Tian, Xuefen</creatorcontrib><creatorcontrib>Li, Yuxiang</creatorcontrib><creatorcontrib>Zhang, Danfeng</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Gao, Yongfeng</creatorcontrib><creatorcontrib>Zeng, Deer</creatorcontrib><creatorcontrib>Hou, Pei</creatorcontrib><creatorcontrib>Niu, Xiangli</creatorcontrib><creatorcontrib>Cao, Ying</creatorcontrib><creatorcontrib>Li, Guangwei</creatorcontrib><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Xiao, Fangming</creatorcontrib><creatorcontrib>Liu, Yongsheng</creatorcontrib><title>Whole transcriptome sequencing reveals genes involved in plastid/chloroplast division and development are regulated by the HP1/DDB1 at an early stage of tomato fruit development</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>The phenotype of tomato high pigment-1 (hp1) mutant is characterized by overproduction of pigments including chlorophyll and carotenoids during fruit development and ripening. Although the increased plastid compartment size has been thought to largely attribute to the enhanced pigmentation, the molecular aspects of how the HP1/DDB1 gene manipulates plastid biogenesis and development are largely unknown. In the present study, we compared transcriptome profiles of immature fruit pericarp tissue between tomato cv. Ailsa Craig (WT) and its isogenic hp1 mutant. Over 20 million sequence reads, representing &gt; 1.6 Gb sequence data per sample, were generated and assembled into 21,972 and 22,167 gene models in WT and hp1, respectively, accounting for over 60 % official gene models in both samples. Subsequent analyses revealed that 8,322 and 7,989 alternative splicing events, 8833 or 8510 extended 5′-UTRs, 8,263 or 8,939 extended 3′-UTRs, and 1,136 and 1,133 novel transcripts, exist in WT and hp1, respectively. Significant differences in expression level of 880 genes were detected between the WT and hp1, many of which are involved in signaling transduction, transcription regulation and biotic and abiotic stresses response. Distinctly, RNA-seq datasets, quantitative RT-PCR analyses demonstrate that, in hp1 mutant pericarp tissue at early developmental stage, an apparent expression alteration was found in several regulators directly involved in plastid division and development. These results provide a useful reference for a more accurate and more detailed characterization of the molecular process in the development and pigmentation of tomato fruits.</description><subject>3' Untranslated Regions - genetics</subject><subject>5' Untranslated Regions - genetics</subject><subject>Agriculture</subject><subject>alternative splicing</subject><subject>Alternative Splicing - genetics</subject><subject>Biomedical and Life Sciences</subject><subject>Carotenoids</subject><subject>chlorophyll</subject><subject>Chlorophylls</subject><subject>Chloroplasts</subject><subject>data collection</subject><subject>Developmental stages</subject><subject>early development</subject><subject>Ecology</subject><subject>Exons</subject><subject>Forestry</subject><subject>Fruit - genetics</subject><subject>Fruit - growth &amp; development</subject><subject>fruiting</subject><subject>Fruits</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Ontology</subject><subject>Genes</subject><subject>Genes, Plant - genetics</subject><subject>Genomes</subject><subject>Life Sciences</subject><subject>Lycopersicon esculentum</subject><subject>Lycopersicon esculentum - genetics</subject><subject>Lycopersicon esculentum - growth &amp; development</subject><subject>Molecular Sequence Annotation</subject><subject>mutants</subject><subject>Original Article</subject><subject>pericarp</subject><subject>phenotype</subject><subject>Pigmentation</subject><subject>pigments</subject><subject>Plant cells</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Sciences</subject><subject>Plants</subject><subject>Plastids</subject><subject>Plastids - genetics</subject><subject>Reproducibility of Results</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>ripening</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Sequence Analysis, RNA</subject><subject>Tomatoes</subject><subject>transcription (genetics)</subject><subject>Transcription, Genetic</subject><subject>transcriptome</subject><subject>Transcriptome - genetics</subject><subject>Untranslated regions</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNktFuFCEUhidGY7fVB_BCJfHGm3FhgFm41FatSRNNtPGSMDNnZtnMwhaYTfaxfMOedWrTeGHkBsj5_p8DP0XxgtF3jNLVMlEqKllSxkumRVXqR8WCCV6VFRXqcbGgFNdUc3lSnKa0oRSLq9XT4qTiWihF2aL49XMdRiA5Wp_a6HY5bIEkuJnAt84PJMIe7JjIAB4ScX4fxj10uCC70absumW7HkMMv3ekc3uXXPDE-o50KB3Dbgs-ExsBrYZptBnVzYHkNZDLb2x5cfGBEYuAJ2DjeCAp2wFI6Al2YnMgfZxcfuj1rHjSY0fw_G4-K64_ffxxflleff385fz9VdkKyXLZ6qqRlvai72nLpWK9rpVV0vaNsPgunPJVJxi3CquN7oTspBSqqbWUrWbAz4q3s-8uBnyOlM3WpRbG0XoIUzJM1IpLrbT8D1RIzWquV4i--QvdhCl6vMiREgr70gIpNlNtDClF6M0uuq2NB8OoOUZv5ugNRm-O0RuNmld3zlOzhe5e8SdrBKoZSFjyA8QHR__D9eUs2qQc4r2p4LIWtDre5_Vc720wdogumevvFX40ikNyWvNb4I7NyA</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Tang, Xiaofeng</creator><creator>Tang, Zizhi</creator><creator>Huang, Shengxiong</creator><creator>Liu, Jikai</creator><creator>Liu, Jia</creator><creator>Shi, Wei</creator><creator>Tian, Xuefen</creator><creator>Li, Yuxiang</creator><creator>Zhang, Danfeng</creator><creator>Yang, Jian</creator><creator>Gao, Yongfeng</creator><creator>Zeng, Deer</creator><creator>Hou, Pei</creator><creator>Niu, Xiangli</creator><creator>Cao, Ying</creator><creator>Li, Guangwei</creator><creator>Li, Xiao</creator><creator>Xiao, Fangming</creator><creator>Liu, Yongsheng</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20131101</creationdate><title>Whole transcriptome sequencing reveals genes involved in plastid/chloroplast division and development are regulated by the HP1/DDB1 at an early stage of tomato fruit development</title><author>Tang, Xiaofeng ; Tang, Zizhi ; Huang, Shengxiong ; Liu, Jikai ; Liu, Jia ; Shi, Wei ; Tian, Xuefen ; Li, Yuxiang ; Zhang, Danfeng ; Yang, Jian ; Gao, Yongfeng ; Zeng, Deer ; Hou, Pei ; Niu, Xiangli ; Cao, Ying ; Li, Guangwei ; Li, Xiao ; Xiao, Fangming ; Liu, Yongsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-c92b5a0f4ff0c3581f968a85afb4a0323037d413a8c35b9d45d5548b6955c91e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>3' Untranslated Regions - genetics</topic><topic>5' Untranslated Regions - genetics</topic><topic>Agriculture</topic><topic>alternative splicing</topic><topic>Alternative Splicing - genetics</topic><topic>Biomedical and Life Sciences</topic><topic>Carotenoids</topic><topic>chlorophyll</topic><topic>Chlorophylls</topic><topic>Chloroplasts</topic><topic>data collection</topic><topic>Developmental stages</topic><topic>early development</topic><topic>Ecology</topic><topic>Exons</topic><topic>Forestry</topic><topic>Fruit - genetics</topic><topic>Fruit - growth &amp; development</topic><topic>fruiting</topic><topic>Fruits</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Ontology</topic><topic>Genes</topic><topic>Genes, Plant - genetics</topic><topic>Genomes</topic><topic>Life Sciences</topic><topic>Lycopersicon esculentum</topic><topic>Lycopersicon esculentum - genetics</topic><topic>Lycopersicon esculentum - growth &amp; development</topic><topic>Molecular Sequence Annotation</topic><topic>mutants</topic><topic>Original Article</topic><topic>pericarp</topic><topic>phenotype</topic><topic>Pigmentation</topic><topic>pigments</topic><topic>Plant cells</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Sciences</topic><topic>Plants</topic><topic>Plastids</topic><topic>Plastids - genetics</topic><topic>Reproducibility of Results</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>ripening</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Sequence Analysis, RNA</topic><topic>Tomatoes</topic><topic>transcription (genetics)</topic><topic>Transcription, Genetic</topic><topic>transcriptome</topic><topic>Transcriptome - genetics</topic><topic>Untranslated regions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Xiaofeng</creatorcontrib><creatorcontrib>Tang, Zizhi</creatorcontrib><creatorcontrib>Huang, Shengxiong</creatorcontrib><creatorcontrib>Liu, Jikai</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Shi, Wei</creatorcontrib><creatorcontrib>Tian, Xuefen</creatorcontrib><creatorcontrib>Li, Yuxiang</creatorcontrib><creatorcontrib>Zhang, Danfeng</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Gao, Yongfeng</creatorcontrib><creatorcontrib>Zeng, Deer</creatorcontrib><creatorcontrib>Hou, Pei</creatorcontrib><creatorcontrib>Niu, Xiangli</creatorcontrib><creatorcontrib>Cao, Ying</creatorcontrib><creatorcontrib>Li, Guangwei</creatorcontrib><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Xiao, Fangming</creatorcontrib><creatorcontrib>Liu, Yongsheng</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Xiaofeng</au><au>Tang, Zizhi</au><au>Huang, Shengxiong</au><au>Liu, Jikai</au><au>Liu, Jia</au><au>Shi, Wei</au><au>Tian, Xuefen</au><au>Li, Yuxiang</au><au>Zhang, Danfeng</au><au>Yang, Jian</au><au>Gao, Yongfeng</au><au>Zeng, Deer</au><au>Hou, Pei</au><au>Niu, Xiangli</au><au>Cao, Ying</au><au>Li, Guangwei</au><au>Li, Xiao</au><au>Xiao, Fangming</au><au>Liu, Yongsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Whole transcriptome sequencing reveals genes involved in plastid/chloroplast division and development are regulated by the HP1/DDB1 at an early stage of tomato fruit development</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>238</volume><issue>5</issue><spage>923</spage><epage>936</epage><pages>923-936</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><abstract>The phenotype of tomato high pigment-1 (hp1) mutant is characterized by overproduction of pigments including chlorophyll and carotenoids during fruit development and ripening. Although the increased plastid compartment size has been thought to largely attribute to the enhanced pigmentation, the molecular aspects of how the HP1/DDB1 gene manipulates plastid biogenesis and development are largely unknown. In the present study, we compared transcriptome profiles of immature fruit pericarp tissue between tomato cv. Ailsa Craig (WT) and its isogenic hp1 mutant. Over 20 million sequence reads, representing &gt; 1.6 Gb sequence data per sample, were generated and assembled into 21,972 and 22,167 gene models in WT and hp1, respectively, accounting for over 60 % official gene models in both samples. Subsequent analyses revealed that 8,322 and 7,989 alternative splicing events, 8833 or 8510 extended 5′-UTRs, 8,263 or 8,939 extended 3′-UTRs, and 1,136 and 1,133 novel transcripts, exist in WT and hp1, respectively. Significant differences in expression level of 880 genes were detected between the WT and hp1, many of which are involved in signaling transduction, transcription regulation and biotic and abiotic stresses response. Distinctly, RNA-seq datasets, quantitative RT-PCR analyses demonstrate that, in hp1 mutant pericarp tissue at early developmental stage, an apparent expression alteration was found in several regulators directly involved in plastid division and development. These results provide a useful reference for a more accurate and more detailed characterization of the molecular process in the development and pigmentation of tomato fruits.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>23948801</pmid><doi>10.1007/s00425-013-1942-9</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2013-11, Vol.238 (5), p.923-936
issn 0032-0935
1432-2048
language eng
recordid cdi_proquest_miscellaneous_1468359895
source JSTOR Archival Journals and Primary Sources Collection; Springer Nature
subjects 3' Untranslated Regions - genetics
5' Untranslated Regions - genetics
Agriculture
alternative splicing
Alternative Splicing - genetics
Biomedical and Life Sciences
Carotenoids
chlorophyll
Chlorophylls
Chloroplasts
data collection
Developmental stages
early development
Ecology
Exons
Forestry
Fruit - genetics
Fruit - growth & development
fruiting
Fruits
Gene Expression Regulation, Developmental
Gene Expression Regulation, Plant
Gene Ontology
Genes
Genes, Plant - genetics
Genomes
Life Sciences
Lycopersicon esculentum
Lycopersicon esculentum - genetics
Lycopersicon esculentum - growth & development
Molecular Sequence Annotation
mutants
Original Article
pericarp
phenotype
Pigmentation
pigments
Plant cells
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Sciences
Plants
Plastids
Plastids - genetics
Reproducibility of Results
Reverse Transcriptase Polymerase Chain Reaction
ripening
RNA, Messenger - genetics
RNA, Messenger - metabolism
Sequence Analysis, RNA
Tomatoes
transcription (genetics)
Transcription, Genetic
transcriptome
Transcriptome - genetics
Untranslated regions
title Whole transcriptome sequencing reveals genes involved in plastid/chloroplast division and development are regulated by the HP1/DDB1 at an early stage of tomato fruit development
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Whole%20transcriptome%20sequencing%20reveals%20genes%20involved%20in%20plastid/chloroplast%20division%20and%20development%20are%20regulated%20by%20the%20HP1/DDB1%20at%20an%20early%20stage%20of%20tomato%20fruit%20development&rft.jtitle=Planta&rft.au=Tang,%20Xiaofeng&rft.date=2013-11-01&rft.volume=238&rft.issue=5&rft.spage=923&rft.epage=936&rft.pages=923-936&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/s00425-013-1942-9&rft_dat=%3Cjstor_proqu%3E43564027%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-c92b5a0f4ff0c3581f968a85afb4a0323037d413a8c35b9d45d5548b6955c91e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1444823094&rft_id=info:pmid/23948801&rft_jstor_id=43564027&rfr_iscdi=true