Loading…
Antibacterial activity and cytotoxicity of hydrogel-nanosilver composites based on copolymers from 2-acrylamido-2-methylpropanesulfonate sodium
ABSTRACT In this research, we contributed to the search for potential hydrogel–silver dressings by generating hydrogel–silver nanoparticles (AgNPs) composites prepared by the dipping of the crosslinked hydrogel poly(N‐vinylpyrrolidone‐co‐2‐acrylamido‐2‐methylpropanesulfonate sodium) (1:1) and poly(a...
Saved in:
Published in: | Journal of applied polymer science 2014-02, Vol.131 (3), p.np-n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT
In this research, we contributed to the search for potential hydrogel–silver dressings by generating hydrogel–silver nanoparticles (AgNPs) composites prepared by the dipping of the crosslinked hydrogel poly(N‐vinylpyrrolidone‐co‐2‐acrylamido‐2‐methylpropanesulfonate sodium) (1:1) and poly(acrylamide‐co‐2‐acrylamido‐2‐methylpropanesulfonate sodium) (1:1) into an aqueous suspension of citrate‐stabilized AgNPs. The composites obtained were evaluated by an antibacterial activity assay on Staphylococcus aureus and Escherichia coli and subjected to an in vitro cytotoxicity assay for human fibroblasts. The composite formed from the hydrogel poly(N‐vinylpyrrolidone‐co‐2‐acrylamido‐2‐methylpropanesulfonate sodium) with 3 mol % N,N‐methylene bisacrylamide showed the highest antibacterial activity and the least cytotoxicity among the composites tested; this makes it an excellent alternative as a potential dressing for the treatment of deep and exudative wounds. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 39644. |
---|---|
ISSN: | 0021-8995 1097-4628 |
DOI: | 10.1002/app.39644 |