Loading…

Heat stress and the fitness consequences of climate change for terrestrial ectotherms

Climate change will increase both average temperatures and extreme summer temperatures. Analyses of the fitness consequences of climate change have generally omitted negative fitness and population declines associated with heat stress. Here, we examine how seasonal and interannual temperature variab...

Full description

Saved in:
Bibliographic Details
Published in:Functional ecology 2013-12, Vol.27 (6), p.1415-1423
Main Authors: Kingsolver, Joel G, Diamond, Sarah E, Buckley, Lauren B, Grindstaff, Jennifer
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5315-4192866181d988007f9e961bc68cb17c4c86f94e4b1fbfb27e72134ac5c451da3
cites cdi_FETCH-LOGICAL-c5315-4192866181d988007f9e961bc68cb17c4c86f94e4b1fbfb27e72134ac5c451da3
container_end_page 1423
container_issue 6
container_start_page 1415
container_title Functional ecology
container_volume 27
creator Kingsolver, Joel G
Diamond, Sarah E
Buckley, Lauren B
Grindstaff, Jennifer
description Climate change will increase both average temperatures and extreme summer temperatures. Analyses of the fitness consequences of climate change have generally omitted negative fitness and population declines associated with heat stress. Here, we examine how seasonal and interannual temperature variability will impact fitness shifts of ectotherms from the past (1961–1990) to future (2071–2100), by modelling thermal performance curves (TPCs) for insect species across latitudes. In temperate regions, climate change increased the length of the growing season (increasing fitness) and increased the frequency of heat stress (decreasing fitness). Consequently, species at mid‐latitudes (20–40°) showed pronounced but heterogeneous responses to climate change. Fitness decreases for these species were accompanied by greater interannual variation in fitness. An alternative TPC model and a larger data set gave qualitatively similar results. How close maximum summer temperatures are to the critical thermal maximum of a species – the thermal buffer – is a good predictor of the change in mean fitness expected under climate change. Thermal buffers will decrease to near or below zero by 2100 for many tropical and mid‐latitude species. Our forecasts suggest that mid‐latitude species will be particularly susceptible to heat stress associated with climate change due to temperature variation.
doi_str_mv 10.1111/1365-2435.12145
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1468384170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24034010</jstor_id><sourcerecordid>24034010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5315-4192866181d988007f9e961bc68cb17c4c86f94e4b1fbfb27e72134ac5c451da3</originalsourceid><addsrcrecordid>eNqFkMFrHCEYxaU00G3Sc0-lQinkMomffjrOsSxJUwj0kOxZHFeTWWbHVF1C_vs6nSSFXupF1N97fu8R8hHYGdR1DkLJhqOQZ8AB5Ruyer15S1aMq67RqMQ78j7nHWOsk5yvyObK20JzST5naqctLfeehqFM89nFKftfBz85n2kM1I3D3hZP3b2d7ioWEy0-VWlJgx2pdyVWedrnE3IU7Jj9h-f9mGwuL27XV831z-8_1t-uGycFyAah41op0LDttGasDZ3vFPROaddD69BpFTr02EPoQ89b33IQaJ10KGFrxTE5XXwfUqxz5mL2Q3Z-HO3k4yEbQKWFRmhZRb_8g-7iIU11ukrJjjOULVbqfKFcijknH8xDqpnTkwFm5prNXKqZSzV_aq6Kr8--Njs7hmQnN-RXGW87rMlmTi7c4zD6p__ZmsuL9Yv_p0W3yyWmv77IBDKYc31e3oONxt6l-vfmhjNQjAGXyFD8BvBfnTM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1459204574</pqid></control><display><type>article</type><title>Heat stress and the fitness consequences of climate change for terrestrial ectotherms</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Kingsolver, Joel G ; Diamond, Sarah E ; Buckley, Lauren B ; Grindstaff, Jennifer</creator><contributor>Grindstaff, Jennifer</contributor><creatorcontrib>Kingsolver, Joel G ; Diamond, Sarah E ; Buckley, Lauren B ; Grindstaff, Jennifer ; Grindstaff, Jennifer</creatorcontrib><description>Climate change will increase both average temperatures and extreme summer temperatures. Analyses of the fitness consequences of climate change have generally omitted negative fitness and population declines associated with heat stress. Here, we examine how seasonal and interannual temperature variability will impact fitness shifts of ectotherms from the past (1961–1990) to future (2071–2100), by modelling thermal performance curves (TPCs) for insect species across latitudes. In temperate regions, climate change increased the length of the growing season (increasing fitness) and increased the frequency of heat stress (decreasing fitness). Consequently, species at mid‐latitudes (20–40°) showed pronounced but heterogeneous responses to climate change. Fitness decreases for these species were accompanied by greater interannual variation in fitness. An alternative TPC model and a larger data set gave qualitatively similar results. How close maximum summer temperatures are to the critical thermal maximum of a species – the thermal buffer – is a good predictor of the change in mean fitness expected under climate change. Thermal buffers will decrease to near or below zero by 2100 for many tropical and mid‐latitude species. Our forecasts suggest that mid‐latitude species will be particularly susceptible to heat stress associated with climate change due to temperature variation.</description><identifier>ISSN: 0269-8463</identifier><identifier>EISSN: 1365-2435</identifier><identifier>DOI: 10.1111/1365-2435.12145</identifier><identifier>CODEN: FECOE5</identifier><language>eng</language><publisher>Oxford: British Ecological Society</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Autoecology ; Biological and medical sciences ; Climate change ; Climate models ; Climatology. Bioclimatology. Climate change ; data collection ; Earth, ocean, space ; Ecological competition ; ectotherms ; Evolutionary ecology ; Exact sciences and technology ; External geophysics ; fitness ; Fundamental and applied biological sciences. Psychology ; General aspects ; growing season ; Growing seasons ; heat stress ; Heat stress disorders ; heat tolerance ; High temperature ; Human ecology ; Insect ecology ; insects ; Latitude ; latitudinal gradients ; Meteorology ; population dynamics ; Species ; summer ; temperate zones ; temperature ; thermal performance curves</subject><ispartof>Functional ecology, 2013-12, Vol.27 (6), p.1415-1423</ispartof><rights>2013 British Ecological Society</rights><rights>2013 The Authors. Functional Ecology © 2013 British Ecological Society</rights><rights>2015 INIST-CNRS</rights><rights>Functional Ecology © 2013 British Ecological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5315-4192866181d988007f9e961bc68cb17c4c86f94e4b1fbfb27e72134ac5c451da3</citedby><cites>FETCH-LOGICAL-c5315-4192866181d988007f9e961bc68cb17c4c86f94e4b1fbfb27e72134ac5c451da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24034010$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24034010$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,58236,58469</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27948005$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Grindstaff, Jennifer</contributor><creatorcontrib>Kingsolver, Joel G</creatorcontrib><creatorcontrib>Diamond, Sarah E</creatorcontrib><creatorcontrib>Buckley, Lauren B</creatorcontrib><creatorcontrib>Grindstaff, Jennifer</creatorcontrib><title>Heat stress and the fitness consequences of climate change for terrestrial ectotherms</title><title>Functional ecology</title><description>Climate change will increase both average temperatures and extreme summer temperatures. Analyses of the fitness consequences of climate change have generally omitted negative fitness and population declines associated with heat stress. Here, we examine how seasonal and interannual temperature variability will impact fitness shifts of ectotherms from the past (1961–1990) to future (2071–2100), by modelling thermal performance curves (TPCs) for insect species across latitudes. In temperate regions, climate change increased the length of the growing season (increasing fitness) and increased the frequency of heat stress (decreasing fitness). Consequently, species at mid‐latitudes (20–40°) showed pronounced but heterogeneous responses to climate change. Fitness decreases for these species were accompanied by greater interannual variation in fitness. An alternative TPC model and a larger data set gave qualitatively similar results. How close maximum summer temperatures are to the critical thermal maximum of a species – the thermal buffer – is a good predictor of the change in mean fitness expected under climate change. Thermal buffers will decrease to near or below zero by 2100 for many tropical and mid‐latitude species. Our forecasts suggest that mid‐latitude species will be particularly susceptible to heat stress associated with climate change due to temperature variation.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Autoecology</subject><subject>Biological and medical sciences</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>data collection</subject><subject>Earth, ocean, space</subject><subject>Ecological competition</subject><subject>ectotherms</subject><subject>Evolutionary ecology</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>fitness</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>growing season</subject><subject>Growing seasons</subject><subject>heat stress</subject><subject>Heat stress disorders</subject><subject>heat tolerance</subject><subject>High temperature</subject><subject>Human ecology</subject><subject>Insect ecology</subject><subject>insects</subject><subject>Latitude</subject><subject>latitudinal gradients</subject><subject>Meteorology</subject><subject>population dynamics</subject><subject>Species</subject><subject>summer</subject><subject>temperate zones</subject><subject>temperature</subject><subject>thermal performance curves</subject><issn>0269-8463</issn><issn>1365-2435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkMFrHCEYxaU00G3Sc0-lQinkMomffjrOsSxJUwj0kOxZHFeTWWbHVF1C_vs6nSSFXupF1N97fu8R8hHYGdR1DkLJhqOQZ8AB5Ruyer15S1aMq67RqMQ78j7nHWOsk5yvyObK20JzST5naqctLfeehqFM89nFKftfBz85n2kM1I3D3hZP3b2d7ioWEy0-VWlJgx2pdyVWedrnE3IU7Jj9h-f9mGwuL27XV831z-8_1t-uGycFyAah41op0LDttGasDZ3vFPROaddD69BpFTr02EPoQ89b33IQaJ10KGFrxTE5XXwfUqxz5mL2Q3Z-HO3k4yEbQKWFRmhZRb_8g-7iIU11ukrJjjOULVbqfKFcijknH8xDqpnTkwFm5prNXKqZSzV_aq6Kr8--Njs7hmQnN-RXGW87rMlmTi7c4zD6p__ZmsuL9Yv_p0W3yyWmv77IBDKYc31e3oONxt6l-vfmhjNQjAGXyFD8BvBfnTM</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Kingsolver, Joel G</creator><creator>Diamond, Sarah E</creator><creator>Buckley, Lauren B</creator><creator>Grindstaff, Jennifer</creator><general>British Ecological Society</general><general>Blackwell Publishing</general><general>Wiley-Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7ST</scope><scope>7U6</scope></search><sort><creationdate>201312</creationdate><title>Heat stress and the fitness consequences of climate change for terrestrial ectotherms</title><author>Kingsolver, Joel G ; Diamond, Sarah E ; Buckley, Lauren B ; Grindstaff, Jennifer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5315-4192866181d988007f9e961bc68cb17c4c86f94e4b1fbfb27e72134ac5c451da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Autoecology</topic><topic>Biological and medical sciences</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>data collection</topic><topic>Earth, ocean, space</topic><topic>Ecological competition</topic><topic>ectotherms</topic><topic>Evolutionary ecology</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>fitness</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>growing season</topic><topic>Growing seasons</topic><topic>heat stress</topic><topic>Heat stress disorders</topic><topic>heat tolerance</topic><topic>High temperature</topic><topic>Human ecology</topic><topic>Insect ecology</topic><topic>insects</topic><topic>Latitude</topic><topic>latitudinal gradients</topic><topic>Meteorology</topic><topic>population dynamics</topic><topic>Species</topic><topic>summer</topic><topic>temperate zones</topic><topic>temperature</topic><topic>thermal performance curves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kingsolver, Joel G</creatorcontrib><creatorcontrib>Diamond, Sarah E</creatorcontrib><creatorcontrib>Buckley, Lauren B</creatorcontrib><creatorcontrib>Grindstaff, Jennifer</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Functional ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kingsolver, Joel G</au><au>Diamond, Sarah E</au><au>Buckley, Lauren B</au><au>Grindstaff, Jennifer</au><au>Grindstaff, Jennifer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat stress and the fitness consequences of climate change for terrestrial ectotherms</atitle><jtitle>Functional ecology</jtitle><date>2013-12</date><risdate>2013</risdate><volume>27</volume><issue>6</issue><spage>1415</spage><epage>1423</epage><pages>1415-1423</pages><issn>0269-8463</issn><eissn>1365-2435</eissn><coden>FECOE5</coden><abstract>Climate change will increase both average temperatures and extreme summer temperatures. Analyses of the fitness consequences of climate change have generally omitted negative fitness and population declines associated with heat stress. Here, we examine how seasonal and interannual temperature variability will impact fitness shifts of ectotherms from the past (1961–1990) to future (2071–2100), by modelling thermal performance curves (TPCs) for insect species across latitudes. In temperate regions, climate change increased the length of the growing season (increasing fitness) and increased the frequency of heat stress (decreasing fitness). Consequently, species at mid‐latitudes (20–40°) showed pronounced but heterogeneous responses to climate change. Fitness decreases for these species were accompanied by greater interannual variation in fitness. An alternative TPC model and a larger data set gave qualitatively similar results. How close maximum summer temperatures are to the critical thermal maximum of a species – the thermal buffer – is a good predictor of the change in mean fitness expected under climate change. Thermal buffers will decrease to near or below zero by 2100 for many tropical and mid‐latitude species. Our forecasts suggest that mid‐latitude species will be particularly susceptible to heat stress associated with climate change due to temperature variation.</abstract><cop>Oxford</cop><pub>British Ecological Society</pub><doi>10.1111/1365-2435.12145</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0269-8463
ispartof Functional ecology, 2013-12, Vol.27 (6), p.1415-1423
issn 0269-8463
1365-2435
language eng
recordid cdi_proquest_miscellaneous_1468384170
source JSTOR Archival Journals and Primary Sources Collection【Remote access available】; Wiley-Blackwell Read & Publish Collection
subjects Animal and plant ecology
Animal, plant and microbial ecology
Autoecology
Biological and medical sciences
Climate change
Climate models
Climatology. Bioclimatology. Climate change
data collection
Earth, ocean, space
Ecological competition
ectotherms
Evolutionary ecology
Exact sciences and technology
External geophysics
fitness
Fundamental and applied biological sciences. Psychology
General aspects
growing season
Growing seasons
heat stress
Heat stress disorders
heat tolerance
High temperature
Human ecology
Insect ecology
insects
Latitude
latitudinal gradients
Meteorology
population dynamics
Species
summer
temperate zones
temperature
thermal performance curves
title Heat stress and the fitness consequences of climate change for terrestrial ectotherms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A02%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20stress%20and%20the%20fitness%20consequences%20of%20climate%20change%20for%20terrestrial%20ectotherms&rft.jtitle=Functional%20ecology&rft.au=Kingsolver,%20Joel%20G&rft.date=2013-12&rft.volume=27&rft.issue=6&rft.spage=1415&rft.epage=1423&rft.pages=1415-1423&rft.issn=0269-8463&rft.eissn=1365-2435&rft.coden=FECOE5&rft_id=info:doi/10.1111/1365-2435.12145&rft_dat=%3Cjstor_proqu%3E24034010%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5315-4192866181d988007f9e961bc68cb17c4c86f94e4b1fbfb27e72134ac5c451da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1459204574&rft_id=info:pmid/&rft_jstor_id=24034010&rfr_iscdi=true