Loading…
Heat stress and the fitness consequences of climate change for terrestrial ectotherms
Climate change will increase both average temperatures and extreme summer temperatures. Analyses of the fitness consequences of climate change have generally omitted negative fitness and population declines associated with heat stress. Here, we examine how seasonal and interannual temperature variab...
Saved in:
Published in: | Functional ecology 2013-12, Vol.27 (6), p.1415-1423 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5315-4192866181d988007f9e961bc68cb17c4c86f94e4b1fbfb27e72134ac5c451da3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5315-4192866181d988007f9e961bc68cb17c4c86f94e4b1fbfb27e72134ac5c451da3 |
container_end_page | 1423 |
container_issue | 6 |
container_start_page | 1415 |
container_title | Functional ecology |
container_volume | 27 |
creator | Kingsolver, Joel G Diamond, Sarah E Buckley, Lauren B Grindstaff, Jennifer |
description | Climate change will increase both average temperatures and extreme summer temperatures. Analyses of the fitness consequences of climate change have generally omitted negative fitness and population declines associated with heat stress. Here, we examine how seasonal and interannual temperature variability will impact fitness shifts of ectotherms from the past (1961–1990) to future (2071–2100), by modelling thermal performance curves (TPCs) for insect species across latitudes. In temperate regions, climate change increased the length of the growing season (increasing fitness) and increased the frequency of heat stress (decreasing fitness). Consequently, species at mid‐latitudes (20–40°) showed pronounced but heterogeneous responses to climate change. Fitness decreases for these species were accompanied by greater interannual variation in fitness. An alternative TPC model and a larger data set gave qualitatively similar results. How close maximum summer temperatures are to the critical thermal maximum of a species – the thermal buffer – is a good predictor of the change in mean fitness expected under climate change. Thermal buffers will decrease to near or below zero by 2100 for many tropical and mid‐latitude species. Our forecasts suggest that mid‐latitude species will be particularly susceptible to heat stress associated with climate change due to temperature variation. |
doi_str_mv | 10.1111/1365-2435.12145 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1468384170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24034010</jstor_id><sourcerecordid>24034010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5315-4192866181d988007f9e961bc68cb17c4c86f94e4b1fbfb27e72134ac5c451da3</originalsourceid><addsrcrecordid>eNqFkMFrHCEYxaU00G3Sc0-lQinkMomffjrOsSxJUwj0kOxZHFeTWWbHVF1C_vs6nSSFXupF1N97fu8R8hHYGdR1DkLJhqOQZ8AB5Ruyer15S1aMq67RqMQ78j7nHWOsk5yvyObK20JzST5naqctLfeehqFM89nFKftfBz85n2kM1I3D3hZP3b2d7ioWEy0-VWlJgx2pdyVWedrnE3IU7Jj9h-f9mGwuL27XV831z-8_1t-uGycFyAah41op0LDttGasDZ3vFPROaddD69BpFTr02EPoQ89b33IQaJ10KGFrxTE5XXwfUqxz5mL2Q3Z-HO3k4yEbQKWFRmhZRb_8g-7iIU11ukrJjjOULVbqfKFcijknH8xDqpnTkwFm5prNXKqZSzV_aq6Kr8--Njs7hmQnN-RXGW87rMlmTi7c4zD6p__ZmsuL9Yv_p0W3yyWmv77IBDKYc31e3oONxt6l-vfmhjNQjAGXyFD8BvBfnTM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1459204574</pqid></control><display><type>article</type><title>Heat stress and the fitness consequences of climate change for terrestrial ectotherms</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>Wiley-Blackwell Read & Publish Collection</source><creator>Kingsolver, Joel G ; Diamond, Sarah E ; Buckley, Lauren B ; Grindstaff, Jennifer</creator><contributor>Grindstaff, Jennifer</contributor><creatorcontrib>Kingsolver, Joel G ; Diamond, Sarah E ; Buckley, Lauren B ; Grindstaff, Jennifer ; Grindstaff, Jennifer</creatorcontrib><description>Climate change will increase both average temperatures and extreme summer temperatures. Analyses of the fitness consequences of climate change have generally omitted negative fitness and population declines associated with heat stress. Here, we examine how seasonal and interannual temperature variability will impact fitness shifts of ectotherms from the past (1961–1990) to future (2071–2100), by modelling thermal performance curves (TPCs) for insect species across latitudes. In temperate regions, climate change increased the length of the growing season (increasing fitness) and increased the frequency of heat stress (decreasing fitness). Consequently, species at mid‐latitudes (20–40°) showed pronounced but heterogeneous responses to climate change. Fitness decreases for these species were accompanied by greater interannual variation in fitness. An alternative TPC model and a larger data set gave qualitatively similar results. How close maximum summer temperatures are to the critical thermal maximum of a species – the thermal buffer – is a good predictor of the change in mean fitness expected under climate change. Thermal buffers will decrease to near or below zero by 2100 for many tropical and mid‐latitude species. Our forecasts suggest that mid‐latitude species will be particularly susceptible to heat stress associated with climate change due to temperature variation.</description><identifier>ISSN: 0269-8463</identifier><identifier>EISSN: 1365-2435</identifier><identifier>DOI: 10.1111/1365-2435.12145</identifier><identifier>CODEN: FECOE5</identifier><language>eng</language><publisher>Oxford: British Ecological Society</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Autoecology ; Biological and medical sciences ; Climate change ; Climate models ; Climatology. Bioclimatology. Climate change ; data collection ; Earth, ocean, space ; Ecological competition ; ectotherms ; Evolutionary ecology ; Exact sciences and technology ; External geophysics ; fitness ; Fundamental and applied biological sciences. Psychology ; General aspects ; growing season ; Growing seasons ; heat stress ; Heat stress disorders ; heat tolerance ; High temperature ; Human ecology ; Insect ecology ; insects ; Latitude ; latitudinal gradients ; Meteorology ; population dynamics ; Species ; summer ; temperate zones ; temperature ; thermal performance curves</subject><ispartof>Functional ecology, 2013-12, Vol.27 (6), p.1415-1423</ispartof><rights>2013 British Ecological Society</rights><rights>2013 The Authors. Functional Ecology © 2013 British Ecological Society</rights><rights>2015 INIST-CNRS</rights><rights>Functional Ecology © 2013 British Ecological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5315-4192866181d988007f9e961bc68cb17c4c86f94e4b1fbfb27e72134ac5c451da3</citedby><cites>FETCH-LOGICAL-c5315-4192866181d988007f9e961bc68cb17c4c86f94e4b1fbfb27e72134ac5c451da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24034010$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24034010$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,58236,58469</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27948005$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Grindstaff, Jennifer</contributor><creatorcontrib>Kingsolver, Joel G</creatorcontrib><creatorcontrib>Diamond, Sarah E</creatorcontrib><creatorcontrib>Buckley, Lauren B</creatorcontrib><creatorcontrib>Grindstaff, Jennifer</creatorcontrib><title>Heat stress and the fitness consequences of climate change for terrestrial ectotherms</title><title>Functional ecology</title><description>Climate change will increase both average temperatures and extreme summer temperatures. Analyses of the fitness consequences of climate change have generally omitted negative fitness and population declines associated with heat stress. Here, we examine how seasonal and interannual temperature variability will impact fitness shifts of ectotherms from the past (1961–1990) to future (2071–2100), by modelling thermal performance curves (TPCs) for insect species across latitudes. In temperate regions, climate change increased the length of the growing season (increasing fitness) and increased the frequency of heat stress (decreasing fitness). Consequently, species at mid‐latitudes (20–40°) showed pronounced but heterogeneous responses to climate change. Fitness decreases for these species were accompanied by greater interannual variation in fitness. An alternative TPC model and a larger data set gave qualitatively similar results. How close maximum summer temperatures are to the critical thermal maximum of a species – the thermal buffer – is a good predictor of the change in mean fitness expected under climate change. Thermal buffers will decrease to near or below zero by 2100 for many tropical and mid‐latitude species. Our forecasts suggest that mid‐latitude species will be particularly susceptible to heat stress associated with climate change due to temperature variation.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Autoecology</subject><subject>Biological and medical sciences</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>data collection</subject><subject>Earth, ocean, space</subject><subject>Ecological competition</subject><subject>ectotherms</subject><subject>Evolutionary ecology</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>fitness</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>growing season</subject><subject>Growing seasons</subject><subject>heat stress</subject><subject>Heat stress disorders</subject><subject>heat tolerance</subject><subject>High temperature</subject><subject>Human ecology</subject><subject>Insect ecology</subject><subject>insects</subject><subject>Latitude</subject><subject>latitudinal gradients</subject><subject>Meteorology</subject><subject>population dynamics</subject><subject>Species</subject><subject>summer</subject><subject>temperate zones</subject><subject>temperature</subject><subject>thermal performance curves</subject><issn>0269-8463</issn><issn>1365-2435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkMFrHCEYxaU00G3Sc0-lQinkMomffjrOsSxJUwj0kOxZHFeTWWbHVF1C_vs6nSSFXupF1N97fu8R8hHYGdR1DkLJhqOQZ8AB5Ruyer15S1aMq67RqMQ78j7nHWOsk5yvyObK20JzST5naqctLfeehqFM89nFKftfBz85n2kM1I3D3hZP3b2d7ioWEy0-VWlJgx2pdyVWedrnE3IU7Jj9h-f9mGwuL27XV831z-8_1t-uGycFyAah41op0LDttGasDZ3vFPROaddD69BpFTr02EPoQ89b33IQaJ10KGFrxTE5XXwfUqxz5mL2Q3Z-HO3k4yEbQKWFRmhZRb_8g-7iIU11ukrJjjOULVbqfKFcijknH8xDqpnTkwFm5prNXKqZSzV_aq6Kr8--Njs7hmQnN-RXGW87rMlmTi7c4zD6p__ZmsuL9Yv_p0W3yyWmv77IBDKYc31e3oONxt6l-vfmhjNQjAGXyFD8BvBfnTM</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Kingsolver, Joel G</creator><creator>Diamond, Sarah E</creator><creator>Buckley, Lauren B</creator><creator>Grindstaff, Jennifer</creator><general>British Ecological Society</general><general>Blackwell Publishing</general><general>Wiley-Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7ST</scope><scope>7U6</scope></search><sort><creationdate>201312</creationdate><title>Heat stress and the fitness consequences of climate change for terrestrial ectotherms</title><author>Kingsolver, Joel G ; Diamond, Sarah E ; Buckley, Lauren B ; Grindstaff, Jennifer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5315-4192866181d988007f9e961bc68cb17c4c86f94e4b1fbfb27e72134ac5c451da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Autoecology</topic><topic>Biological and medical sciences</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>data collection</topic><topic>Earth, ocean, space</topic><topic>Ecological competition</topic><topic>ectotherms</topic><topic>Evolutionary ecology</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>fitness</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>growing season</topic><topic>Growing seasons</topic><topic>heat stress</topic><topic>Heat stress disorders</topic><topic>heat tolerance</topic><topic>High temperature</topic><topic>Human ecology</topic><topic>Insect ecology</topic><topic>insects</topic><topic>Latitude</topic><topic>latitudinal gradients</topic><topic>Meteorology</topic><topic>population dynamics</topic><topic>Species</topic><topic>summer</topic><topic>temperate zones</topic><topic>temperature</topic><topic>thermal performance curves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kingsolver, Joel G</creatorcontrib><creatorcontrib>Diamond, Sarah E</creatorcontrib><creatorcontrib>Buckley, Lauren B</creatorcontrib><creatorcontrib>Grindstaff, Jennifer</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Functional ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kingsolver, Joel G</au><au>Diamond, Sarah E</au><au>Buckley, Lauren B</au><au>Grindstaff, Jennifer</au><au>Grindstaff, Jennifer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat stress and the fitness consequences of climate change for terrestrial ectotherms</atitle><jtitle>Functional ecology</jtitle><date>2013-12</date><risdate>2013</risdate><volume>27</volume><issue>6</issue><spage>1415</spage><epage>1423</epage><pages>1415-1423</pages><issn>0269-8463</issn><eissn>1365-2435</eissn><coden>FECOE5</coden><abstract>Climate change will increase both average temperatures and extreme summer temperatures. Analyses of the fitness consequences of climate change have generally omitted negative fitness and population declines associated with heat stress. Here, we examine how seasonal and interannual temperature variability will impact fitness shifts of ectotherms from the past (1961–1990) to future (2071–2100), by modelling thermal performance curves (TPCs) for insect species across latitudes. In temperate regions, climate change increased the length of the growing season (increasing fitness) and increased the frequency of heat stress (decreasing fitness). Consequently, species at mid‐latitudes (20–40°) showed pronounced but heterogeneous responses to climate change. Fitness decreases for these species were accompanied by greater interannual variation in fitness. An alternative TPC model and a larger data set gave qualitatively similar results. How close maximum summer temperatures are to the critical thermal maximum of a species – the thermal buffer – is a good predictor of the change in mean fitness expected under climate change. Thermal buffers will decrease to near or below zero by 2100 for many tropical and mid‐latitude species. Our forecasts suggest that mid‐latitude species will be particularly susceptible to heat stress associated with climate change due to temperature variation.</abstract><cop>Oxford</cop><pub>British Ecological Society</pub><doi>10.1111/1365-2435.12145</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-8463 |
ispartof | Functional ecology, 2013-12, Vol.27 (6), p.1415-1423 |
issn | 0269-8463 1365-2435 |
language | eng |
recordid | cdi_proquest_miscellaneous_1468384170 |
source | JSTOR Archival Journals and Primary Sources Collection【Remote access available】; Wiley-Blackwell Read & Publish Collection |
subjects | Animal and plant ecology Animal, plant and microbial ecology Autoecology Biological and medical sciences Climate change Climate models Climatology. Bioclimatology. Climate change data collection Earth, ocean, space Ecological competition ectotherms Evolutionary ecology Exact sciences and technology External geophysics fitness Fundamental and applied biological sciences. Psychology General aspects growing season Growing seasons heat stress Heat stress disorders heat tolerance High temperature Human ecology Insect ecology insects Latitude latitudinal gradients Meteorology population dynamics Species summer temperate zones temperature thermal performance curves |
title | Heat stress and the fitness consequences of climate change for terrestrial ectotherms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A02%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20stress%20and%20the%20fitness%20consequences%20of%20climate%20change%20for%20terrestrial%20ectotherms&rft.jtitle=Functional%20ecology&rft.au=Kingsolver,%20Joel%20G&rft.date=2013-12&rft.volume=27&rft.issue=6&rft.spage=1415&rft.epage=1423&rft.pages=1415-1423&rft.issn=0269-8463&rft.eissn=1365-2435&rft.coden=FECOE5&rft_id=info:doi/10.1111/1365-2435.12145&rft_dat=%3Cjstor_proqu%3E24034010%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5315-4192866181d988007f9e961bc68cb17c4c86f94e4b1fbfb27e72134ac5c451da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1459204574&rft_id=info:pmid/&rft_jstor_id=24034010&rfr_iscdi=true |