Loading…

Binding of perfluorinated fatty acids to serum proteins

Perfluorooctane sulfonic acid (PFOS) accumulates in the liver and blood of exposed organisms. The potential for these surfactant molecules to interfere with hormone/protein interactions in blood is of concern given the importance of these interactions. The PFOS binding to serum proteins was investig...

Full description

Saved in:
Bibliographic Details
Published in:Environmental toxicology and chemistry 2003-11, Vol.22 (11), p.2639-2649
Main Authors: Jones, Paul D., Hu, Wenyue, De Coen, Wim, Newsted, John L., Giesy, John P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Perfluorooctane sulfonic acid (PFOS) accumulates in the liver and blood of exposed organisms. The potential for these surfactant molecules to interfere with hormone/protein interactions in blood is of concern given the importance of these interactions. The PFOS binding to serum proteins was investigated by assessing its ability to displace a variety of steroid hormones from specific binding proteins in the serum of birds and fishes. Perfluorooctane sulfonic acid had only a weak ability to displace estrogen or testosterone from carp serum steroid binding proteins. Displacement of cortisone in avian sera occurred at relatively low PFOS concentrations. Corticosterone displacement potency increased with chain length, and sulfonic acids were more potent than carboxylic acids. The PFOS concentrations estimated to cause these effects were 320 μM or greater, equivalent to serum concentrations greater than 160 mg/L. Using mass spectrometry and direct in vitro binding assays, PFOS was demonstrated to bind strongly to bovine serum albumin (BSA) in a 1:1 stoichiometric ratio. It appears that PFOS in serum is in general bound to albumins. Concentrations of PFOS required to saturate albumin would be in excess of 50 to 100 mg/L. Based on current environmental concentrations, it is unlikely that PFOS would cause displacement of hormones from serum proteins in wildlife.
ISSN:0730-7268
1552-8618
DOI:10.1897/02-553