Loading…

A review of microfabrication and hydrogel engineering for micro-organs on chips

Abstract This review highlights recent trends towards the development of in vitro multicellular systems with definite architectures, or “organs on chips”. First, the chemical composition and mechanical properties of the scaffold have to be consistent with the anatomical environment in vivo . In this...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2014-02, Vol.35 (6), p.1816-1832
Main Authors: Verhulsel, Marine, Vignes, Maéva, Descroix, Stéphanie, Malaquin, Laurent, Vignjevic, Danijela M, Viovy, Jean-Louis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract This review highlights recent trends towards the development of in vitro multicellular systems with definite architectures, or “organs on chips”. First, the chemical composition and mechanical properties of the scaffold have to be consistent with the anatomical environment in vivo . In this perspective, the flourishing interest in hydrogels as cellular substrates has highlighted the main parameters directing cell differentiation that need to be recapitulated in artificial matrix. Another scaffold requirement is to act as a template to guide tissue morphogenesis. Therefore specific microfabrication techniques are required to spatially pattern the environment at microscale. 2D patterning is particularly efficient for organizing planar polarized cell types such as endothelial cells or neurons. However, most organs are characterized by specific sub units organized in three dimensions at the cellular level. The reproduction of such 3D patterns in vitro is necessary for cells to fully differentiate, assemble and coordinate to form a coherent micro-tissue. These physiological microstructures are often integrated in microfluidic devices whose controlled environments provide the cell culture with more life-like conditions than traditional cell culture methods. Such systems have a wide range of applications, for fundamental research, as tools to accelerate drug development and testing, and finally, for regenerative medicine.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2013.11.021