Loading…
Tuning Omniphobicity via Morphological Control of Metal–Organic Framework Functionalized Surfaces
Fabrication of microstructures for imparting omniphobicity to a surface generally requires the use of lithographic techniques and specialized equipment. We report instead a simple strategy for the synthesis of microstructured surfaces via metal–organic framework (MOF) self-assembly. Our method allow...
Saved in:
Published in: | Journal of the American Chemical Society 2013-11, Vol.135 (44), p.16272-16275 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fabrication of microstructures for imparting omniphobicity to a surface generally requires the use of lithographic techniques and specialized equipment. We report instead a simple strategy for the synthesis of microstructured surfaces via metal–organic framework (MOF) self-assembly. Our method allows us to localize epitaxial growth of MOF at the tips of needle crystals to create mushroom-shaped structures, thus conferring re-entrant textures to the MOF-functionalized surfaces. These structures synthesized via wet chemistry were found to have omniphobic properties due to the resulting re-entrant texture. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja407896m |