Loading…
Optimization of cross flow heat exchangers for thermoelectric waste heat recovery
Thermoelectric waste heat recovery is investigated for current thermoelectric materials with advanced heat exchangers. Numerical heat exchanger models integrated with models for Bi 2Te 3 thermoelectric modules are validated against experimental data from previous cross flow heat exchanger studies as...
Saved in:
Published in: | Energy conversion and management 2004-06, Vol.45 (9), p.1565-1582 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c371t-8a3adb8c07783db4a192389661a1ac5419eb4f13772da4f3ab693dd7f78cdfd63 |
---|---|
cites | cdi_FETCH-LOGICAL-c371t-8a3adb8c07783db4a192389661a1ac5419eb4f13772da4f3ab693dd7f78cdfd63 |
container_end_page | 1582 |
container_issue | 9 |
container_start_page | 1565 |
container_title | Energy conversion and management |
container_volume | 45 |
creator | Crane, Douglas T. Jackson, Gregory S. |
description | Thermoelectric waste heat recovery is investigated for current thermoelectric materials with advanced heat exchangers. Numerical heat exchanger models integrated with models for Bi
2Te
3 thermoelectric modules are validated against experimental data from previous cross flow heat exchanger studies as well as experiments using thermoelectrics between counterflow hot water and cooling air flow channels. The models are used in optimization studies of thermoelectric waste heat recovery with air cooling in a cross flow heat exchanger. Power losses from an air fan and a fluid pump result in an optimal configuration at intermediate cooling air and hot fluid flows. Results show that heat exchangers with Bi
2Te
3 thermoelectrics can achieve net power densities over 40 W/l. |
doi_str_mv | 10.1016/j.enconman.2003.09.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_14698445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890403002462</els_id><sourcerecordid>14698445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-8a3adb8c07783db4a192389661a1ac5419eb4f13772da4f3ab693dd7f78cdfd63</originalsourceid><addsrcrecordid>eNqFkEtrHDEQhEVIIBvHfyHMJbnNWD2akUa3BJMXGIzBPoteqZXVMjPaSPIrvz5y1iHHnAqar6roYuwd8A44yLN9R6uN64Jr13MuOq67Ki_YBial277v1Uu24aBlO2k-vGZvct7zSoxcbtjV5aGEJfzCEuLaRN_YFHNu_Bzvmx1haejB7nD9QakeY2rKjtISaSZbUrDNPeZCRzCRjXeUHt-yVx7nTKfPesJuvny-Pv_WXlx-_X7-6aK1QkFpJxTotpPlSk3CbQcE3YtJSwkIaMcBNG0HD0Kp3uHgBW6lFs4prybrvJPihH045h5S_HlLuZglZEvzjCvF22xgkHoahrGC8gj-eS2RN4cUFkyPBrh5WtDszd8FzdOChmtTpRrfPzdgtjj7hKsN-Z97HAFAQuU-Hjmq794FSibbUBPJhTpKMS6G_1X9BspQi_k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14698445</pqid></control><display><type>article</type><title>Optimization of cross flow heat exchangers for thermoelectric waste heat recovery</title><source>ScienceDirect Journals</source><creator>Crane, Douglas T. ; Jackson, Gregory S.</creator><creatorcontrib>Crane, Douglas T. ; Jackson, Gregory S.</creatorcontrib><description>Thermoelectric waste heat recovery is investigated for current thermoelectric materials with advanced heat exchangers. Numerical heat exchanger models integrated with models for Bi
2Te
3 thermoelectric modules are validated against experimental data from previous cross flow heat exchanger studies as well as experiments using thermoelectrics between counterflow hot water and cooling air flow channels. The models are used in optimization studies of thermoelectric waste heat recovery with air cooling in a cross flow heat exchanger. Power losses from an air fan and a fluid pump result in an optimal configuration at intermediate cooling air and hot fluid flows. Results show that heat exchangers with Bi
2Te
3 thermoelectrics can achieve net power densities over 40 W/l.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2003.09.003</identifier><identifier>CODEN: ECMADL</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Devices using thermal energy ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Heat exchanger ; Heat exchangers (included heat transformers, condensers, cooling towers) ; Optimization ; Power generation ; Thermoelectric ; Waste heat recovery</subject><ispartof>Energy conversion and management, 2004-06, Vol.45 (9), p.1565-1582</ispartof><rights>2003 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-8a3adb8c07783db4a192389661a1ac5419eb4f13772da4f3ab693dd7f78cdfd63</citedby><cites>FETCH-LOGICAL-c371t-8a3adb8c07783db4a192389661a1ac5419eb4f13772da4f3ab693dd7f78cdfd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15511161$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Crane, Douglas T.</creatorcontrib><creatorcontrib>Jackson, Gregory S.</creatorcontrib><title>Optimization of cross flow heat exchangers for thermoelectric waste heat recovery</title><title>Energy conversion and management</title><description>Thermoelectric waste heat recovery is investigated for current thermoelectric materials with advanced heat exchangers. Numerical heat exchanger models integrated with models for Bi
2Te
3 thermoelectric modules are validated against experimental data from previous cross flow heat exchanger studies as well as experiments using thermoelectrics between counterflow hot water and cooling air flow channels. The models are used in optimization studies of thermoelectric waste heat recovery with air cooling in a cross flow heat exchanger. Power losses from an air fan and a fluid pump result in an optimal configuration at intermediate cooling air and hot fluid flows. Results show that heat exchangers with Bi
2Te
3 thermoelectrics can achieve net power densities over 40 W/l.</description><subject>Applied sciences</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Heat exchanger</subject><subject>Heat exchangers (included heat transformers, condensers, cooling towers)</subject><subject>Optimization</subject><subject>Power generation</subject><subject>Thermoelectric</subject><subject>Waste heat recovery</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkEtrHDEQhEVIIBvHfyHMJbnNWD2akUa3BJMXGIzBPoteqZXVMjPaSPIrvz5y1iHHnAqar6roYuwd8A44yLN9R6uN64Jr13MuOq67Ki_YBial277v1Uu24aBlO2k-vGZvct7zSoxcbtjV5aGEJfzCEuLaRN_YFHNu_Bzvmx1haejB7nD9QakeY2rKjtISaSZbUrDNPeZCRzCRjXeUHt-yVx7nTKfPesJuvny-Pv_WXlx-_X7-6aK1QkFpJxTotpPlSk3CbQcE3YtJSwkIaMcBNG0HD0Kp3uHgBW6lFs4prybrvJPihH045h5S_HlLuZglZEvzjCvF22xgkHoahrGC8gj-eS2RN4cUFkyPBrh5WtDszd8FzdOChmtTpRrfPzdgtjj7hKsN-Z97HAFAQuU-Hjmq794FSibbUBPJhTpKMS6G_1X9BspQi_k</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Crane, Douglas T.</creator><creator>Jackson, Gregory S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20040601</creationdate><title>Optimization of cross flow heat exchangers for thermoelectric waste heat recovery</title><author>Crane, Douglas T. ; Jackson, Gregory S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-8a3adb8c07783db4a192389661a1ac5419eb4f13772da4f3ab693dd7f78cdfd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Heat exchanger</topic><topic>Heat exchangers (included heat transformers, condensers, cooling towers)</topic><topic>Optimization</topic><topic>Power generation</topic><topic>Thermoelectric</topic><topic>Waste heat recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crane, Douglas T.</creatorcontrib><creatorcontrib>Jackson, Gregory S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crane, Douglas T.</au><au>Jackson, Gregory S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of cross flow heat exchangers for thermoelectric waste heat recovery</atitle><jtitle>Energy conversion and management</jtitle><date>2004-06-01</date><risdate>2004</risdate><volume>45</volume><issue>9</issue><spage>1565</spage><epage>1582</epage><pages>1565-1582</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><coden>ECMADL</coden><abstract>Thermoelectric waste heat recovery is investigated for current thermoelectric materials with advanced heat exchangers. Numerical heat exchanger models integrated with models for Bi
2Te
3 thermoelectric modules are validated against experimental data from previous cross flow heat exchanger studies as well as experiments using thermoelectrics between counterflow hot water and cooling air flow channels. The models are used in optimization studies of thermoelectric waste heat recovery with air cooling in a cross flow heat exchanger. Power losses from an air fan and a fluid pump result in an optimal configuration at intermediate cooling air and hot fluid flows. Results show that heat exchangers with Bi
2Te
3 thermoelectrics can achieve net power densities over 40 W/l.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2003.09.003</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-8904 |
ispartof | Energy conversion and management, 2004-06, Vol.45 (9), p.1565-1582 |
issn | 0196-8904 1879-2227 |
language | eng |
recordid | cdi_proquest_miscellaneous_14698445 |
source | ScienceDirect Journals |
subjects | Applied sciences Devices using thermal energy Energy Energy. Thermal use of fuels Exact sciences and technology Heat exchanger Heat exchangers (included heat transformers, condensers, cooling towers) Optimization Power generation Thermoelectric Waste heat recovery |
title | Optimization of cross flow heat exchangers for thermoelectric waste heat recovery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A37%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20cross%20flow%20heat%20exchangers%20for%20thermoelectric%20waste%20heat%20recovery&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Crane,%20Douglas%20T.&rft.date=2004-06-01&rft.volume=45&rft.issue=9&rft.spage=1565&rft.epage=1582&rft.pages=1565-1582&rft.issn=0196-8904&rft.eissn=1879-2227&rft.coden=ECMADL&rft_id=info:doi/10.1016/j.enconman.2003.09.003&rft_dat=%3Cproquest_cross%3E14698445%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-8a3adb8c07783db4a192389661a1ac5419eb4f13772da4f3ab693dd7f78cdfd63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=14698445&rft_id=info:pmid/&rfr_iscdi=true |