Loading…

Optimization of cross flow heat exchangers for thermoelectric waste heat recovery

Thermoelectric waste heat recovery is investigated for current thermoelectric materials with advanced heat exchangers. Numerical heat exchanger models integrated with models for Bi 2Te 3 thermoelectric modules are validated against experimental data from previous cross flow heat exchanger studies as...

Full description

Saved in:
Bibliographic Details
Published in:Energy conversion and management 2004-06, Vol.45 (9), p.1565-1582
Main Authors: Crane, Douglas T., Jackson, Gregory S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c371t-8a3adb8c07783db4a192389661a1ac5419eb4f13772da4f3ab693dd7f78cdfd63
cites cdi_FETCH-LOGICAL-c371t-8a3adb8c07783db4a192389661a1ac5419eb4f13772da4f3ab693dd7f78cdfd63
container_end_page 1582
container_issue 9
container_start_page 1565
container_title Energy conversion and management
container_volume 45
creator Crane, Douglas T.
Jackson, Gregory S.
description Thermoelectric waste heat recovery is investigated for current thermoelectric materials with advanced heat exchangers. Numerical heat exchanger models integrated with models for Bi 2Te 3 thermoelectric modules are validated against experimental data from previous cross flow heat exchanger studies as well as experiments using thermoelectrics between counterflow hot water and cooling air flow channels. The models are used in optimization studies of thermoelectric waste heat recovery with air cooling in a cross flow heat exchanger. Power losses from an air fan and a fluid pump result in an optimal configuration at intermediate cooling air and hot fluid flows. Results show that heat exchangers with Bi 2Te 3 thermoelectrics can achieve net power densities over 40 W/l.
doi_str_mv 10.1016/j.enconman.2003.09.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_14698445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890403002462</els_id><sourcerecordid>14698445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-8a3adb8c07783db4a192389661a1ac5419eb4f13772da4f3ab693dd7f78cdfd63</originalsourceid><addsrcrecordid>eNqFkEtrHDEQhEVIIBvHfyHMJbnNWD2akUa3BJMXGIzBPoteqZXVMjPaSPIrvz5y1iHHnAqar6roYuwd8A44yLN9R6uN64Jr13MuOq67Ki_YBial277v1Uu24aBlO2k-vGZvct7zSoxcbtjV5aGEJfzCEuLaRN_YFHNu_Bzvmx1haejB7nD9QakeY2rKjtISaSZbUrDNPeZCRzCRjXeUHt-yVx7nTKfPesJuvny-Pv_WXlx-_X7-6aK1QkFpJxTotpPlSk3CbQcE3YtJSwkIaMcBNG0HD0Kp3uHgBW6lFs4prybrvJPihH045h5S_HlLuZglZEvzjCvF22xgkHoahrGC8gj-eS2RN4cUFkyPBrh5WtDszd8FzdOChmtTpRrfPzdgtjj7hKsN-Z97HAFAQuU-Hjmq794FSibbUBPJhTpKMS6G_1X9BspQi_k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14698445</pqid></control><display><type>article</type><title>Optimization of cross flow heat exchangers for thermoelectric waste heat recovery</title><source>ScienceDirect Journals</source><creator>Crane, Douglas T. ; Jackson, Gregory S.</creator><creatorcontrib>Crane, Douglas T. ; Jackson, Gregory S.</creatorcontrib><description>Thermoelectric waste heat recovery is investigated for current thermoelectric materials with advanced heat exchangers. Numerical heat exchanger models integrated with models for Bi 2Te 3 thermoelectric modules are validated against experimental data from previous cross flow heat exchanger studies as well as experiments using thermoelectrics between counterflow hot water and cooling air flow channels. The models are used in optimization studies of thermoelectric waste heat recovery with air cooling in a cross flow heat exchanger. Power losses from an air fan and a fluid pump result in an optimal configuration at intermediate cooling air and hot fluid flows. Results show that heat exchangers with Bi 2Te 3 thermoelectrics can achieve net power densities over 40 W/l.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2003.09.003</identifier><identifier>CODEN: ECMADL</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Devices using thermal energy ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Heat exchanger ; Heat exchangers (included heat transformers, condensers, cooling towers) ; Optimization ; Power generation ; Thermoelectric ; Waste heat recovery</subject><ispartof>Energy conversion and management, 2004-06, Vol.45 (9), p.1565-1582</ispartof><rights>2003 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-8a3adb8c07783db4a192389661a1ac5419eb4f13772da4f3ab693dd7f78cdfd63</citedby><cites>FETCH-LOGICAL-c371t-8a3adb8c07783db4a192389661a1ac5419eb4f13772da4f3ab693dd7f78cdfd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15511161$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Crane, Douglas T.</creatorcontrib><creatorcontrib>Jackson, Gregory S.</creatorcontrib><title>Optimization of cross flow heat exchangers for thermoelectric waste heat recovery</title><title>Energy conversion and management</title><description>Thermoelectric waste heat recovery is investigated for current thermoelectric materials with advanced heat exchangers. Numerical heat exchanger models integrated with models for Bi 2Te 3 thermoelectric modules are validated against experimental data from previous cross flow heat exchanger studies as well as experiments using thermoelectrics between counterflow hot water and cooling air flow channels. The models are used in optimization studies of thermoelectric waste heat recovery with air cooling in a cross flow heat exchanger. Power losses from an air fan and a fluid pump result in an optimal configuration at intermediate cooling air and hot fluid flows. Results show that heat exchangers with Bi 2Te 3 thermoelectrics can achieve net power densities over 40 W/l.</description><subject>Applied sciences</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Heat exchanger</subject><subject>Heat exchangers (included heat transformers, condensers, cooling towers)</subject><subject>Optimization</subject><subject>Power generation</subject><subject>Thermoelectric</subject><subject>Waste heat recovery</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkEtrHDEQhEVIIBvHfyHMJbnNWD2akUa3BJMXGIzBPoteqZXVMjPaSPIrvz5y1iHHnAqar6roYuwd8A44yLN9R6uN64Jr13MuOq67Ki_YBial277v1Uu24aBlO2k-vGZvct7zSoxcbtjV5aGEJfzCEuLaRN_YFHNu_Bzvmx1haejB7nD9QakeY2rKjtISaSZbUrDNPeZCRzCRjXeUHt-yVx7nTKfPesJuvny-Pv_WXlx-_X7-6aK1QkFpJxTotpPlSk3CbQcE3YtJSwkIaMcBNG0HD0Kp3uHgBW6lFs4prybrvJPihH045h5S_HlLuZglZEvzjCvF22xgkHoahrGC8gj-eS2RN4cUFkyPBrh5WtDszd8FzdOChmtTpRrfPzdgtjj7hKsN-Z97HAFAQuU-Hjmq794FSibbUBPJhTpKMS6G_1X9BspQi_k</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Crane, Douglas T.</creator><creator>Jackson, Gregory S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20040601</creationdate><title>Optimization of cross flow heat exchangers for thermoelectric waste heat recovery</title><author>Crane, Douglas T. ; Jackson, Gregory S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-8a3adb8c07783db4a192389661a1ac5419eb4f13772da4f3ab693dd7f78cdfd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Heat exchanger</topic><topic>Heat exchangers (included heat transformers, condensers, cooling towers)</topic><topic>Optimization</topic><topic>Power generation</topic><topic>Thermoelectric</topic><topic>Waste heat recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crane, Douglas T.</creatorcontrib><creatorcontrib>Jackson, Gregory S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crane, Douglas T.</au><au>Jackson, Gregory S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of cross flow heat exchangers for thermoelectric waste heat recovery</atitle><jtitle>Energy conversion and management</jtitle><date>2004-06-01</date><risdate>2004</risdate><volume>45</volume><issue>9</issue><spage>1565</spage><epage>1582</epage><pages>1565-1582</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><coden>ECMADL</coden><abstract>Thermoelectric waste heat recovery is investigated for current thermoelectric materials with advanced heat exchangers. Numerical heat exchanger models integrated with models for Bi 2Te 3 thermoelectric modules are validated against experimental data from previous cross flow heat exchanger studies as well as experiments using thermoelectrics between counterflow hot water and cooling air flow channels. The models are used in optimization studies of thermoelectric waste heat recovery with air cooling in a cross flow heat exchanger. Power losses from an air fan and a fluid pump result in an optimal configuration at intermediate cooling air and hot fluid flows. Results show that heat exchangers with Bi 2Te 3 thermoelectrics can achieve net power densities over 40 W/l.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2003.09.003</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2004-06, Vol.45 (9), p.1565-1582
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_miscellaneous_14698445
source ScienceDirect Journals
subjects Applied sciences
Devices using thermal energy
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Heat exchanger
Heat exchangers (included heat transformers, condensers, cooling towers)
Optimization
Power generation
Thermoelectric
Waste heat recovery
title Optimization of cross flow heat exchangers for thermoelectric waste heat recovery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A37%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20cross%20flow%20heat%20exchangers%20for%20thermoelectric%20waste%20heat%20recovery&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Crane,%20Douglas%20T.&rft.date=2004-06-01&rft.volume=45&rft.issue=9&rft.spage=1565&rft.epage=1582&rft.pages=1565-1582&rft.issn=0196-8904&rft.eissn=1879-2227&rft.coden=ECMADL&rft_id=info:doi/10.1016/j.enconman.2003.09.003&rft_dat=%3Cproquest_cross%3E14698445%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-8a3adb8c07783db4a192389661a1ac5419eb4f13772da4f3ab693dd7f78cdfd63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=14698445&rft_id=info:pmid/&rfr_iscdi=true