Loading…

Heat transfer aspects of an elevated linear absorber

This paper describes aspects of the design methodology and heat transfer calculations for an elevated north–south oriented linear absorber. The absorber is part of a direct steam generation solar thermal concentrating system based on the Australian compact linear Fresnel reflector (CLFR) concept. Th...

Full description

Saved in:
Bibliographic Details
Published in:Solar energy 2004, Vol.76 (1), p.243-249
Main Author: Dey, C.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c395t-d5929e679d313ba18095f26765edea7e412d6b185730855846490ccd9feb671a3
cites cdi_FETCH-LOGICAL-c395t-d5929e679d313ba18095f26765edea7e412d6b185730855846490ccd9feb671a3
container_end_page 249
container_issue 1
container_start_page 243
container_title Solar energy
container_volume 76
creator Dey, C.J.
description This paper describes aspects of the design methodology and heat transfer calculations for an elevated north–south oriented linear absorber. The absorber is part of a direct steam generation solar thermal concentrating system based on the Australian compact linear Fresnel reflector (CLFR) concept. The basic absorber design is an inverted air cavity with a glass cover enclosing a selective surface. This arrangement has been shown previously to offer good optical and thermal performance from measurements on a 4 kW thermal outdoor test apparatus. Two main design aims are discussed here: Firstly to maximise the heat transfer between the absorbing surface and the steam pipes, and secondly, to ensure that the absorber surface temperature is sufficiently uniform so as not to cause thermal degradation of the selective surface. Results are given of the absorber temperature distribution obtained from finite element analysis. Sufficiently low temperature differences between the fluid surface and the absorbing surface (
doi_str_mv 10.1016/j.solener.2003.08.030
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_14707187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X03002962</els_id><sourcerecordid>786537451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-d5929e679d313ba18095f26765edea7e412d6b185730855846490ccd9feb671a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMoWKs_QRgE3c2Yj8nXSqSoFQpuFNyFTOYNZJhOajIt-O9NaUFw4yqLd959uQeha4Irgom476sUBhghVhRjVmFVYYZP0IzUkpSEcnmKZnmgSqzp5zm6SKnHmEii5AzVS7BTMUU7pg5iYdMG3JSK0BV2LGCAnZ2gLQY_gs3TJoXYQLxEZ50dElwd3zn6eH56XyzL1dvL6-JxVTqm-VS2XFMNQuqWEdZYorDmHRVScGjBSqgJbUVDFJcMK85VLWqNnWt1B42QxLI5ujvkbmL42kKazNonB8NgRwjbZHJBvK-RwZs_YB-2ccx_M5TlppxIliF-gFwMKUXozCb6tY3fhmCzF2l6cxRp9iINViaLzHu3x3CbnB267Mr59LvMmRaK0sw9HDjISnY-pyTnYXTQ-pilmjb4fy79AFs_ibY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>231715173</pqid></control><display><type>article</type><title>Heat transfer aspects of an elevated linear absorber</title><source>ScienceDirect Freedom Collection</source><creator>Dey, C.J.</creator><creatorcontrib>Dey, C.J.</creatorcontrib><description>This paper describes aspects of the design methodology and heat transfer calculations for an elevated north–south oriented linear absorber. The absorber is part of a direct steam generation solar thermal concentrating system based on the Australian compact linear Fresnel reflector (CLFR) concept. The basic absorber design is an inverted air cavity with a glass cover enclosing a selective surface. This arrangement has been shown previously to offer good optical and thermal performance from measurements on a 4 kW thermal outdoor test apparatus. Two main design aims are discussed here: Firstly to maximise the heat transfer between the absorbing surface and the steam pipes, and secondly, to ensure that the absorber surface temperature is sufficiently uniform so as not to cause thermal degradation of the selective surface. Results are given of the absorber temperature distribution obtained from finite element analysis. Sufficiently low temperature differences between the fluid surface and the absorbing surface (&lt;20 K) can be achieved with satisfactory pipe separations and sizes, and with practical absorber plate thicknesses.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2003.08.030</identifier><identifier>CODEN: SRENA4</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Energy ; Equipments, installations and applications ; Exact sciences and technology ; Heat transfer ; Innovations ; Natural energy ; Solar energy ; Solar thermal conversion ; Thermal energy</subject><ispartof>Solar energy, 2004, Vol.76 (1), p.243-249</ispartof><rights>2003 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-d5929e679d313ba18095f26765edea7e412d6b185730855846490ccd9feb671a3</citedby><cites>FETCH-LOGICAL-c395t-d5929e679d313ba18095f26765edea7e412d6b185730855846490ccd9feb671a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,4010,4036,4037,23909,23910,25118,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15396822$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dey, C.J.</creatorcontrib><title>Heat transfer aspects of an elevated linear absorber</title><title>Solar energy</title><description>This paper describes aspects of the design methodology and heat transfer calculations for an elevated north–south oriented linear absorber. The absorber is part of a direct steam generation solar thermal concentrating system based on the Australian compact linear Fresnel reflector (CLFR) concept. The basic absorber design is an inverted air cavity with a glass cover enclosing a selective surface. This arrangement has been shown previously to offer good optical and thermal performance from measurements on a 4 kW thermal outdoor test apparatus. Two main design aims are discussed here: Firstly to maximise the heat transfer between the absorbing surface and the steam pipes, and secondly, to ensure that the absorber surface temperature is sufficiently uniform so as not to cause thermal degradation of the selective surface. Results are given of the absorber temperature distribution obtained from finite element analysis. Sufficiently low temperature differences between the fluid surface and the absorbing surface (&lt;20 K) can be achieved with satisfactory pipe separations and sizes, and with practical absorber plate thicknesses.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Equipments, installations and applications</subject><subject>Exact sciences and technology</subject><subject>Heat transfer</subject><subject>Innovations</subject><subject>Natural energy</subject><subject>Solar energy</subject><subject>Solar thermal conversion</subject><subject>Thermal energy</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEURYMoWKs_QRgE3c2Yj8nXSqSoFQpuFNyFTOYNZJhOajIt-O9NaUFw4yqLd959uQeha4Irgom476sUBhghVhRjVmFVYYZP0IzUkpSEcnmKZnmgSqzp5zm6SKnHmEii5AzVS7BTMUU7pg5iYdMG3JSK0BV2LGCAnZ2gLQY_gs3TJoXYQLxEZ50dElwd3zn6eH56XyzL1dvL6-JxVTqm-VS2XFMNQuqWEdZYorDmHRVScGjBSqgJbUVDFJcMK85VLWqNnWt1B42QxLI5ujvkbmL42kKazNonB8NgRwjbZHJBvK-RwZs_YB-2ccx_M5TlppxIliF-gFwMKUXozCb6tY3fhmCzF2l6cxRp9iINViaLzHu3x3CbnB267Mr59LvMmRaK0sw9HDjISnY-pyTnYXTQ-pilmjb4fy79AFs_ibY</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Dey, C.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>2004</creationdate><title>Heat transfer aspects of an elevated linear absorber</title><author>Dey, C.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-d5929e679d313ba18095f26765edea7e412d6b185730855846490ccd9feb671a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Equipments, installations and applications</topic><topic>Exact sciences and technology</topic><topic>Heat transfer</topic><topic>Innovations</topic><topic>Natural energy</topic><topic>Solar energy</topic><topic>Solar thermal conversion</topic><topic>Thermal energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dey, C.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dey, C.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat transfer aspects of an elevated linear absorber</atitle><jtitle>Solar energy</jtitle><date>2004</date><risdate>2004</risdate><volume>76</volume><issue>1</issue><spage>243</spage><epage>249</epage><pages>243-249</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><coden>SRENA4</coden><abstract>This paper describes aspects of the design methodology and heat transfer calculations for an elevated north–south oriented linear absorber. The absorber is part of a direct steam generation solar thermal concentrating system based on the Australian compact linear Fresnel reflector (CLFR) concept. The basic absorber design is an inverted air cavity with a glass cover enclosing a selective surface. This arrangement has been shown previously to offer good optical and thermal performance from measurements on a 4 kW thermal outdoor test apparatus. Two main design aims are discussed here: Firstly to maximise the heat transfer between the absorbing surface and the steam pipes, and secondly, to ensure that the absorber surface temperature is sufficiently uniform so as not to cause thermal degradation of the selective surface. Results are given of the absorber temperature distribution obtained from finite element analysis. Sufficiently low temperature differences between the fluid surface and the absorbing surface (&lt;20 K) can be achieved with satisfactory pipe separations and sizes, and with practical absorber plate thicknesses.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2003.08.030</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-092X
ispartof Solar energy, 2004, Vol.76 (1), p.243-249
issn 0038-092X
1471-1257
language eng
recordid cdi_proquest_miscellaneous_14707187
source ScienceDirect Freedom Collection
subjects Applied sciences
Energy
Equipments, installations and applications
Exact sciences and technology
Heat transfer
Innovations
Natural energy
Solar energy
Solar thermal conversion
Thermal energy
title Heat transfer aspects of an elevated linear absorber
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A01%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20transfer%20aspects%20of%20an%20elevated%20linear%20absorber&rft.jtitle=Solar%20energy&rft.au=Dey,%20C.J.&rft.date=2004&rft.volume=76&rft.issue=1&rft.spage=243&rft.epage=249&rft.pages=243-249&rft.issn=0038-092X&rft.eissn=1471-1257&rft.coden=SRENA4&rft_id=info:doi/10.1016/j.solener.2003.08.030&rft_dat=%3Cproquest_cross%3E786537451%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-d5929e679d313ba18095f26765edea7e412d6b185730855846490ccd9feb671a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=231715173&rft_id=info:pmid/&rfr_iscdi=true