Loading…
Heat transfer aspects of an elevated linear absorber
This paper describes aspects of the design methodology and heat transfer calculations for an elevated north–south oriented linear absorber. The absorber is part of a direct steam generation solar thermal concentrating system based on the Australian compact linear Fresnel reflector (CLFR) concept. Th...
Saved in:
Published in: | Solar energy 2004, Vol.76 (1), p.243-249 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c395t-d5929e679d313ba18095f26765edea7e412d6b185730855846490ccd9feb671a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c395t-d5929e679d313ba18095f26765edea7e412d6b185730855846490ccd9feb671a3 |
container_end_page | 249 |
container_issue | 1 |
container_start_page | 243 |
container_title | Solar energy |
container_volume | 76 |
creator | Dey, C.J. |
description | This paper describes aspects of the design methodology and heat transfer calculations for an elevated north–south oriented linear absorber. The absorber is part of a direct steam generation solar thermal concentrating system based on the Australian compact linear Fresnel reflector (CLFR) concept. The basic absorber design is an inverted air cavity with a glass cover enclosing a selective surface. This arrangement has been shown previously to offer good optical and thermal performance from measurements on a 4 kW
thermal outdoor test apparatus. Two main design aims are discussed here: Firstly to maximise the heat transfer between the absorbing surface and the steam pipes, and secondly, to ensure that the absorber surface temperature is sufficiently uniform so as not to cause thermal degradation of the selective surface. Results are given of the absorber temperature distribution obtained from finite element analysis. Sufficiently low temperature differences between the fluid surface and the absorbing surface ( |
doi_str_mv | 10.1016/j.solener.2003.08.030 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_14707187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X03002962</els_id><sourcerecordid>786537451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-d5929e679d313ba18095f26765edea7e412d6b185730855846490ccd9feb671a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMoWKs_QRgE3c2Yj8nXSqSoFQpuFNyFTOYNZJhOajIt-O9NaUFw4yqLd959uQeha4Irgom476sUBhghVhRjVmFVYYZP0IzUkpSEcnmKZnmgSqzp5zm6SKnHmEii5AzVS7BTMUU7pg5iYdMG3JSK0BV2LGCAnZ2gLQY_gs3TJoXYQLxEZ50dElwd3zn6eH56XyzL1dvL6-JxVTqm-VS2XFMNQuqWEdZYorDmHRVScGjBSqgJbUVDFJcMK85VLWqNnWt1B42QxLI5ujvkbmL42kKazNonB8NgRwjbZHJBvK-RwZs_YB-2ccx_M5TlppxIliF-gFwMKUXozCb6tY3fhmCzF2l6cxRp9iINViaLzHu3x3CbnB267Mr59LvMmRaK0sw9HDjISnY-pyTnYXTQ-pilmjb4fy79AFs_ibY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>231715173</pqid></control><display><type>article</type><title>Heat transfer aspects of an elevated linear absorber</title><source>ScienceDirect Freedom Collection</source><creator>Dey, C.J.</creator><creatorcontrib>Dey, C.J.</creatorcontrib><description>This paper describes aspects of the design methodology and heat transfer calculations for an elevated north–south oriented linear absorber. The absorber is part of a direct steam generation solar thermal concentrating system based on the Australian compact linear Fresnel reflector (CLFR) concept. The basic absorber design is an inverted air cavity with a glass cover enclosing a selective surface. This arrangement has been shown previously to offer good optical and thermal performance from measurements on a 4 kW
thermal outdoor test apparatus. Two main design aims are discussed here: Firstly to maximise the heat transfer between the absorbing surface and the steam pipes, and secondly, to ensure that the absorber surface temperature is sufficiently uniform so as not to cause thermal degradation of the selective surface. Results are given of the absorber temperature distribution obtained from finite element analysis. Sufficiently low temperature differences between the fluid surface and the absorbing surface (<20 K) can be achieved with satisfactory pipe separations and sizes, and with practical absorber plate thicknesses.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2003.08.030</identifier><identifier>CODEN: SRENA4</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Energy ; Equipments, installations and applications ; Exact sciences and technology ; Heat transfer ; Innovations ; Natural energy ; Solar energy ; Solar thermal conversion ; Thermal energy</subject><ispartof>Solar energy, 2004, Vol.76 (1), p.243-249</ispartof><rights>2003 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-d5929e679d313ba18095f26765edea7e412d6b185730855846490ccd9feb671a3</citedby><cites>FETCH-LOGICAL-c395t-d5929e679d313ba18095f26765edea7e412d6b185730855846490ccd9feb671a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,4010,4036,4037,23909,23910,25118,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15396822$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dey, C.J.</creatorcontrib><title>Heat transfer aspects of an elevated linear absorber</title><title>Solar energy</title><description>This paper describes aspects of the design methodology and heat transfer calculations for an elevated north–south oriented linear absorber. The absorber is part of a direct steam generation solar thermal concentrating system based on the Australian compact linear Fresnel reflector (CLFR) concept. The basic absorber design is an inverted air cavity with a glass cover enclosing a selective surface. This arrangement has been shown previously to offer good optical and thermal performance from measurements on a 4 kW
thermal outdoor test apparatus. Two main design aims are discussed here: Firstly to maximise the heat transfer between the absorbing surface and the steam pipes, and secondly, to ensure that the absorber surface temperature is sufficiently uniform so as not to cause thermal degradation of the selective surface. Results are given of the absorber temperature distribution obtained from finite element analysis. Sufficiently low temperature differences between the fluid surface and the absorbing surface (<20 K) can be achieved with satisfactory pipe separations and sizes, and with practical absorber plate thicknesses.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Equipments, installations and applications</subject><subject>Exact sciences and technology</subject><subject>Heat transfer</subject><subject>Innovations</subject><subject>Natural energy</subject><subject>Solar energy</subject><subject>Solar thermal conversion</subject><subject>Thermal energy</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEURYMoWKs_QRgE3c2Yj8nXSqSoFQpuFNyFTOYNZJhOajIt-O9NaUFw4yqLd959uQeha4Irgom476sUBhghVhRjVmFVYYZP0IzUkpSEcnmKZnmgSqzp5zm6SKnHmEii5AzVS7BTMUU7pg5iYdMG3JSK0BV2LGCAnZ2gLQY_gs3TJoXYQLxEZ50dElwd3zn6eH56XyzL1dvL6-JxVTqm-VS2XFMNQuqWEdZYorDmHRVScGjBSqgJbUVDFJcMK85VLWqNnWt1B42QxLI5ujvkbmL42kKazNonB8NgRwjbZHJBvK-RwZs_YB-2ccx_M5TlppxIliF-gFwMKUXozCb6tY3fhmCzF2l6cxRp9iINViaLzHu3x3CbnB267Mr59LvMmRaK0sw9HDjISnY-pyTnYXTQ-pilmjb4fy79AFs_ibY</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Dey, C.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>2004</creationdate><title>Heat transfer aspects of an elevated linear absorber</title><author>Dey, C.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-d5929e679d313ba18095f26765edea7e412d6b185730855846490ccd9feb671a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Equipments, installations and applications</topic><topic>Exact sciences and technology</topic><topic>Heat transfer</topic><topic>Innovations</topic><topic>Natural energy</topic><topic>Solar energy</topic><topic>Solar thermal conversion</topic><topic>Thermal energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dey, C.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dey, C.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat transfer aspects of an elevated linear absorber</atitle><jtitle>Solar energy</jtitle><date>2004</date><risdate>2004</risdate><volume>76</volume><issue>1</issue><spage>243</spage><epage>249</epage><pages>243-249</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><coden>SRENA4</coden><abstract>This paper describes aspects of the design methodology and heat transfer calculations for an elevated north–south oriented linear absorber. The absorber is part of a direct steam generation solar thermal concentrating system based on the Australian compact linear Fresnel reflector (CLFR) concept. The basic absorber design is an inverted air cavity with a glass cover enclosing a selective surface. This arrangement has been shown previously to offer good optical and thermal performance from measurements on a 4 kW
thermal outdoor test apparatus. Two main design aims are discussed here: Firstly to maximise the heat transfer between the absorbing surface and the steam pipes, and secondly, to ensure that the absorber surface temperature is sufficiently uniform so as not to cause thermal degradation of the selective surface. Results are given of the absorber temperature distribution obtained from finite element analysis. Sufficiently low temperature differences between the fluid surface and the absorbing surface (<20 K) can be achieved with satisfactory pipe separations and sizes, and with practical absorber plate thicknesses.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2003.08.030</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-092X |
ispartof | Solar energy, 2004, Vol.76 (1), p.243-249 |
issn | 0038-092X 1471-1257 |
language | eng |
recordid | cdi_proquest_miscellaneous_14707187 |
source | ScienceDirect Freedom Collection |
subjects | Applied sciences Energy Equipments, installations and applications Exact sciences and technology Heat transfer Innovations Natural energy Solar energy Solar thermal conversion Thermal energy |
title | Heat transfer aspects of an elevated linear absorber |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A01%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20transfer%20aspects%20of%20an%20elevated%20linear%20absorber&rft.jtitle=Solar%20energy&rft.au=Dey,%20C.J.&rft.date=2004&rft.volume=76&rft.issue=1&rft.spage=243&rft.epage=249&rft.pages=243-249&rft.issn=0038-092X&rft.eissn=1471-1257&rft.coden=SRENA4&rft_id=info:doi/10.1016/j.solener.2003.08.030&rft_dat=%3Cproquest_cross%3E786537451%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-d5929e679d313ba18095f26765edea7e412d6b185730855846490ccd9feb671a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=231715173&rft_id=info:pmid/&rfr_iscdi=true |