Loading…

Morphological evolution of polytetrafluoroethylene in extreme temperature conditions for aerospace applications

ABSTRACT The organic electrical insulator polytetrafluoroethylene (PTFE) is used in aerospace industry under extreme conditions of temperature and electric field. The melting temperature of PTFE is about 327°C and nowadays operating temperature of this kind of insulators can reach about 300°C and up...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2014-02, Vol.131 (3), p.np-n/a
Main Authors: Huang, Xiao Lin, Martinez-Vega, Juan, Malec, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4321-59e9db78e7baf9c7f4a61b247c59bad9e0d2deae37a78169c34675a95e024ba63
cites cdi_FETCH-LOGICAL-c4321-59e9db78e7baf9c7f4a61b247c59bad9e0d2deae37a78169c34675a95e024ba63
container_end_page n/a
container_issue 3
container_start_page np
container_title Journal of applied polymer science
container_volume 131
creator Huang, Xiao Lin
Martinez-Vega, Juan
Malec, David
description ABSTRACT The organic electrical insulator polytetrafluoroethylene (PTFE) is used in aerospace industry under extreme conditions of temperature and electric field. The melting temperature of PTFE is about 327°C and nowadays operating temperature of this kind of insulators can reach about 300°C and up to 350°C for new generations of machines. All thermal, electrical and mechanical operating stresses, especially high temperature and voltage can be factors of ageing acceleration and/or degradation of the insulators that could cause premature failures. Our present work is focused on the organic insulator behavior at high temperature in order to understand the mechanisms of thermal ageing and degradation. The change of morphology of PTFE during the thermal ageing has been studied. Thin films in PTFE were aged by accelerated method under oxidizing environment (air) and severe thermal constraints between 340 and 450°C. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 39841.
doi_str_mv 10.1002/app.39841
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1475521417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1475521417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4321-59e9db78e7baf9c7f4a61b247c59bad9e0d2deae37a78169c34675a95e024ba63</originalsourceid><addsrcrecordid>eNp1kE9v1DAUxC0EEkvhwDewhJDgkNZ27Dg-Viu2FJXSA_9u1ovzQlO8cbAd6H77ut3SAxKnd5jfjOYNIS85O-SMiSOY58PatJI_IivOjK5kI9rHZFU0XrXGqKfkWUpXjHGuWLMi4WOI82Xw4cfowFP8HfySxzDRMNA5-F3GHGHwS4gB8-XO44R0nChe54hbpBm3M0bIS0TqwtSPt95EhxApYAxpBoe0dPIl_U56Tp4M4BO-uL8H5Mvm3ef1--rs08np-viscrIuTZVB03e6Rd3BYJweJDS8E1I7ZTroDbJe9AhYa9Atb4yrZaMVGIVMyA6a-oC82efOMfxaMGW7HZND72HCsCTLpVZKcMl1QV_9g16FJU6lXaGkablsG1Oot3vKlbdSxMHOcdxC3FnO7O30trxp76Yv7Ov7REhl1SHC5Mb0YBCtqJXUonBHe-7P6HH3_0B7fHHxN7naO8aU8frBAfGnbXStlf12fmLPv35Qm8332q7rGzxapKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449814869</pqid></control><display><type>article</type><title>Morphological evolution of polytetrafluoroethylene in extreme temperature conditions for aerospace applications</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Huang, Xiao Lin ; Martinez-Vega, Juan ; Malec, David</creator><creatorcontrib>Huang, Xiao Lin ; Martinez-Vega, Juan ; Malec, David</creatorcontrib><description>ABSTRACT The organic electrical insulator polytetrafluoroethylene (PTFE) is used in aerospace industry under extreme conditions of temperature and electric field. The melting temperature of PTFE is about 327°C and nowadays operating temperature of this kind of insulators can reach about 300°C and up to 350°C for new generations of machines. All thermal, electrical and mechanical operating stresses, especially high temperature and voltage can be factors of ageing acceleration and/or degradation of the insulators that could cause premature failures. Our present work is focused on the organic insulator behavior at high temperature in order to understand the mechanisms of thermal ageing and degradation. The change of morphology of PTFE during the thermal ageing has been studied. Thin films in PTFE were aged by accelerated method under oxidizing environment (air) and severe thermal constraints between 340 and 450°C. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 39841.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.39841</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Ageing ; Aging ; Applied sciences ; degradation ; differential scanning calorimetry (DSC) ; Exact sciences and technology ; Materials science ; morphology ; Physical properties ; Polymer industry, paints, wood ; Polymers ; Properties and testing ; Technology of polymers ; thermogravimetric analysis (TGA)</subject><ispartof>Journal of applied polymer science, 2014-02, Vol.131 (3), p.np-n/a</ispartof><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4321-59e9db78e7baf9c7f4a61b247c59bad9e0d2deae37a78169c34675a95e024ba63</citedby><cites>FETCH-LOGICAL-c4321-59e9db78e7baf9c7f4a61b247c59bad9e0d2deae37a78169c34675a95e024ba63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28235472$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Xiao Lin</creatorcontrib><creatorcontrib>Martinez-Vega, Juan</creatorcontrib><creatorcontrib>Malec, David</creatorcontrib><title>Morphological evolution of polytetrafluoroethylene in extreme temperature conditions for aerospace applications</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>ABSTRACT The organic electrical insulator polytetrafluoroethylene (PTFE) is used in aerospace industry under extreme conditions of temperature and electric field. The melting temperature of PTFE is about 327°C and nowadays operating temperature of this kind of insulators can reach about 300°C and up to 350°C for new generations of machines. All thermal, electrical and mechanical operating stresses, especially high temperature and voltage can be factors of ageing acceleration and/or degradation of the insulators that could cause premature failures. Our present work is focused on the organic insulator behavior at high temperature in order to understand the mechanisms of thermal ageing and degradation. The change of morphology of PTFE during the thermal ageing has been studied. Thin films in PTFE were aged by accelerated method under oxidizing environment (air) and severe thermal constraints between 340 and 450°C. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 39841.</description><subject>Ageing</subject><subject>Aging</subject><subject>Applied sciences</subject><subject>degradation</subject><subject>differential scanning calorimetry (DSC)</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>morphology</subject><subject>Physical properties</subject><subject>Polymer industry, paints, wood</subject><subject>Polymers</subject><subject>Properties and testing</subject><subject>Technology of polymers</subject><subject>thermogravimetric analysis (TGA)</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kE9v1DAUxC0EEkvhwDewhJDgkNZ27Dg-Viu2FJXSA_9u1ovzQlO8cbAd6H77ut3SAxKnd5jfjOYNIS85O-SMiSOY58PatJI_IivOjK5kI9rHZFU0XrXGqKfkWUpXjHGuWLMi4WOI82Xw4cfowFP8HfySxzDRMNA5-F3GHGHwS4gB8-XO44R0nChe54hbpBm3M0bIS0TqwtSPt95EhxApYAxpBoe0dPIl_U56Tp4M4BO-uL8H5Mvm3ef1--rs08np-viscrIuTZVB03e6Rd3BYJweJDS8E1I7ZTroDbJe9AhYa9Atb4yrZaMVGIVMyA6a-oC82efOMfxaMGW7HZND72HCsCTLpVZKcMl1QV_9g16FJU6lXaGkablsG1Oot3vKlbdSxMHOcdxC3FnO7O30trxp76Yv7Ov7REhl1SHC5Mb0YBCtqJXUonBHe-7P6HH3_0B7fHHxN7naO8aU8frBAfGnbXStlf12fmLPv35Qm8332q7rGzxapKw</recordid><startdate>20140205</startdate><enddate>20140205</enddate><creator>Huang, Xiao Lin</creator><creator>Martinez-Vega, Juan</creator><creator>Malec, David</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140205</creationdate><title>Morphological evolution of polytetrafluoroethylene in extreme temperature conditions for aerospace applications</title><author>Huang, Xiao Lin ; Martinez-Vega, Juan ; Malec, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4321-59e9db78e7baf9c7f4a61b247c59bad9e0d2deae37a78169c34675a95e024ba63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Ageing</topic><topic>Aging</topic><topic>Applied sciences</topic><topic>degradation</topic><topic>differential scanning calorimetry (DSC)</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>morphology</topic><topic>Physical properties</topic><topic>Polymer industry, paints, wood</topic><topic>Polymers</topic><topic>Properties and testing</topic><topic>Technology of polymers</topic><topic>thermogravimetric analysis (TGA)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xiao Lin</creatorcontrib><creatorcontrib>Martinez-Vega, Juan</creatorcontrib><creatorcontrib>Malec, David</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xiao Lin</au><au>Martinez-Vega, Juan</au><au>Malec, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphological evolution of polytetrafluoroethylene in extreme temperature conditions for aerospace applications</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2014-02-05</date><risdate>2014</risdate><volume>131</volume><issue>3</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>ABSTRACT The organic electrical insulator polytetrafluoroethylene (PTFE) is used in aerospace industry under extreme conditions of temperature and electric field. The melting temperature of PTFE is about 327°C and nowadays operating temperature of this kind of insulators can reach about 300°C and up to 350°C for new generations of machines. All thermal, electrical and mechanical operating stresses, especially high temperature and voltage can be factors of ageing acceleration and/or degradation of the insulators that could cause premature failures. Our present work is focused on the organic insulator behavior at high temperature in order to understand the mechanisms of thermal ageing and degradation. The change of morphology of PTFE during the thermal ageing has been studied. Thin films in PTFE were aged by accelerated method under oxidizing environment (air) and severe thermal constraints between 340 and 450°C. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 39841.</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/app.39841</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2014-02, Vol.131 (3), p.np-n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_miscellaneous_1475521417
source Wiley-Blackwell Read & Publish Collection
subjects Ageing
Aging
Applied sciences
degradation
differential scanning calorimetry (DSC)
Exact sciences and technology
Materials science
morphology
Physical properties
Polymer industry, paints, wood
Polymers
Properties and testing
Technology of polymers
thermogravimetric analysis (TGA)
title Morphological evolution of polytetrafluoroethylene in extreme temperature conditions for aerospace applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A20%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphological%20evolution%20of%20polytetrafluoroethylene%20in%20extreme%20temperature%20conditions%20for%20aerospace%20applications&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Huang,%20Xiao%20Lin&rft.date=2014-02-05&rft.volume=131&rft.issue=3&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.39841&rft_dat=%3Cproquest_cross%3E1475521417%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4321-59e9db78e7baf9c7f4a61b247c59bad9e0d2deae37a78169c34675a95e024ba63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1449814869&rft_id=info:pmid/&rfr_iscdi=true