Loading…
Morphological evolution of polytetrafluoroethylene in extreme temperature conditions for aerospace applications
ABSTRACT The organic electrical insulator polytetrafluoroethylene (PTFE) is used in aerospace industry under extreme conditions of temperature and electric field. The melting temperature of PTFE is about 327°C and nowadays operating temperature of this kind of insulators can reach about 300°C and up...
Saved in:
Published in: | Journal of applied polymer science 2014-02, Vol.131 (3), p.np-n/a |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4321-59e9db78e7baf9c7f4a61b247c59bad9e0d2deae37a78169c34675a95e024ba63 |
---|---|
cites | cdi_FETCH-LOGICAL-c4321-59e9db78e7baf9c7f4a61b247c59bad9e0d2deae37a78169c34675a95e024ba63 |
container_end_page | n/a |
container_issue | 3 |
container_start_page | np |
container_title | Journal of applied polymer science |
container_volume | 131 |
creator | Huang, Xiao Lin Martinez-Vega, Juan Malec, David |
description | ABSTRACT
The organic electrical insulator polytetrafluoroethylene (PTFE) is used in aerospace industry under extreme conditions of temperature and electric field. The melting temperature of PTFE is about 327°C and nowadays operating temperature of this kind of insulators can reach about 300°C and up to 350°C for new generations of machines. All thermal, electrical and mechanical operating stresses, especially high temperature and voltage can be factors of ageing acceleration and/or degradation of the insulators that could cause premature failures. Our present work is focused on the organic insulator behavior at high temperature in order to understand the mechanisms of thermal ageing and degradation. The change of morphology of PTFE during the thermal ageing has been studied. Thin films in PTFE were aged by accelerated method under oxidizing environment (air) and severe thermal constraints between 340 and 450°C. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 39841. |
doi_str_mv | 10.1002/app.39841 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1475521417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1475521417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4321-59e9db78e7baf9c7f4a61b247c59bad9e0d2deae37a78169c34675a95e024ba63</originalsourceid><addsrcrecordid>eNp1kE9v1DAUxC0EEkvhwDewhJDgkNZ27Dg-Viu2FJXSA_9u1ovzQlO8cbAd6H77ut3SAxKnd5jfjOYNIS85O-SMiSOY58PatJI_IivOjK5kI9rHZFU0XrXGqKfkWUpXjHGuWLMi4WOI82Xw4cfowFP8HfySxzDRMNA5-F3GHGHwS4gB8-XO44R0nChe54hbpBm3M0bIS0TqwtSPt95EhxApYAxpBoe0dPIl_U56Tp4M4BO-uL8H5Mvm3ef1--rs08np-viscrIuTZVB03e6Rd3BYJweJDS8E1I7ZTroDbJe9AhYa9Atb4yrZaMVGIVMyA6a-oC82efOMfxaMGW7HZND72HCsCTLpVZKcMl1QV_9g16FJU6lXaGkablsG1Oot3vKlbdSxMHOcdxC3FnO7O30trxp76Yv7Ov7REhl1SHC5Mb0YBCtqJXUonBHe-7P6HH3_0B7fHHxN7naO8aU8frBAfGnbXStlf12fmLPv35Qm8332q7rGzxapKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449814869</pqid></control><display><type>article</type><title>Morphological evolution of polytetrafluoroethylene in extreme temperature conditions for aerospace applications</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Huang, Xiao Lin ; Martinez-Vega, Juan ; Malec, David</creator><creatorcontrib>Huang, Xiao Lin ; Martinez-Vega, Juan ; Malec, David</creatorcontrib><description>ABSTRACT
The organic electrical insulator polytetrafluoroethylene (PTFE) is used in aerospace industry under extreme conditions of temperature and electric field. The melting temperature of PTFE is about 327°C and nowadays operating temperature of this kind of insulators can reach about 300°C and up to 350°C for new generations of machines. All thermal, electrical and mechanical operating stresses, especially high temperature and voltage can be factors of ageing acceleration and/or degradation of the insulators that could cause premature failures. Our present work is focused on the organic insulator behavior at high temperature in order to understand the mechanisms of thermal ageing and degradation. The change of morphology of PTFE during the thermal ageing has been studied. Thin films in PTFE were aged by accelerated method under oxidizing environment (air) and severe thermal constraints between 340 and 450°C. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 39841.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.39841</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Ageing ; Aging ; Applied sciences ; degradation ; differential scanning calorimetry (DSC) ; Exact sciences and technology ; Materials science ; morphology ; Physical properties ; Polymer industry, paints, wood ; Polymers ; Properties and testing ; Technology of polymers ; thermogravimetric analysis (TGA)</subject><ispartof>Journal of applied polymer science, 2014-02, Vol.131 (3), p.np-n/a</ispartof><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4321-59e9db78e7baf9c7f4a61b247c59bad9e0d2deae37a78169c34675a95e024ba63</citedby><cites>FETCH-LOGICAL-c4321-59e9db78e7baf9c7f4a61b247c59bad9e0d2deae37a78169c34675a95e024ba63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28235472$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Xiao Lin</creatorcontrib><creatorcontrib>Martinez-Vega, Juan</creatorcontrib><creatorcontrib>Malec, David</creatorcontrib><title>Morphological evolution of polytetrafluoroethylene in extreme temperature conditions for aerospace applications</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>ABSTRACT
The organic electrical insulator polytetrafluoroethylene (PTFE) is used in aerospace industry under extreme conditions of temperature and electric field. The melting temperature of PTFE is about 327°C and nowadays operating temperature of this kind of insulators can reach about 300°C and up to 350°C for new generations of machines. All thermal, electrical and mechanical operating stresses, especially high temperature and voltage can be factors of ageing acceleration and/or degradation of the insulators that could cause premature failures. Our present work is focused on the organic insulator behavior at high temperature in order to understand the mechanisms of thermal ageing and degradation. The change of morphology of PTFE during the thermal ageing has been studied. Thin films in PTFE were aged by accelerated method under oxidizing environment (air) and severe thermal constraints between 340 and 450°C. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 39841.</description><subject>Ageing</subject><subject>Aging</subject><subject>Applied sciences</subject><subject>degradation</subject><subject>differential scanning calorimetry (DSC)</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>morphology</subject><subject>Physical properties</subject><subject>Polymer industry, paints, wood</subject><subject>Polymers</subject><subject>Properties and testing</subject><subject>Technology of polymers</subject><subject>thermogravimetric analysis (TGA)</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kE9v1DAUxC0EEkvhwDewhJDgkNZ27Dg-Viu2FJXSA_9u1ovzQlO8cbAd6H77ut3SAxKnd5jfjOYNIS85O-SMiSOY58PatJI_IivOjK5kI9rHZFU0XrXGqKfkWUpXjHGuWLMi4WOI82Xw4cfowFP8HfySxzDRMNA5-F3GHGHwS4gB8-XO44R0nChe54hbpBm3M0bIS0TqwtSPt95EhxApYAxpBoe0dPIl_U56Tp4M4BO-uL8H5Mvm3ef1--rs08np-viscrIuTZVB03e6Rd3BYJweJDS8E1I7ZTroDbJe9AhYa9Atb4yrZaMVGIVMyA6a-oC82efOMfxaMGW7HZND72HCsCTLpVZKcMl1QV_9g16FJU6lXaGkablsG1Oot3vKlbdSxMHOcdxC3FnO7O30trxp76Yv7Ov7REhl1SHC5Mb0YBCtqJXUonBHe-7P6HH3_0B7fHHxN7naO8aU8frBAfGnbXStlf12fmLPv35Qm8332q7rGzxapKw</recordid><startdate>20140205</startdate><enddate>20140205</enddate><creator>Huang, Xiao Lin</creator><creator>Martinez-Vega, Juan</creator><creator>Malec, David</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140205</creationdate><title>Morphological evolution of polytetrafluoroethylene in extreme temperature conditions for aerospace applications</title><author>Huang, Xiao Lin ; Martinez-Vega, Juan ; Malec, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4321-59e9db78e7baf9c7f4a61b247c59bad9e0d2deae37a78169c34675a95e024ba63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Ageing</topic><topic>Aging</topic><topic>Applied sciences</topic><topic>degradation</topic><topic>differential scanning calorimetry (DSC)</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>morphology</topic><topic>Physical properties</topic><topic>Polymer industry, paints, wood</topic><topic>Polymers</topic><topic>Properties and testing</topic><topic>Technology of polymers</topic><topic>thermogravimetric analysis (TGA)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xiao Lin</creatorcontrib><creatorcontrib>Martinez-Vega, Juan</creatorcontrib><creatorcontrib>Malec, David</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xiao Lin</au><au>Martinez-Vega, Juan</au><au>Malec, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphological evolution of polytetrafluoroethylene in extreme temperature conditions for aerospace applications</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2014-02-05</date><risdate>2014</risdate><volume>131</volume><issue>3</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>ABSTRACT
The organic electrical insulator polytetrafluoroethylene (PTFE) is used in aerospace industry under extreme conditions of temperature and electric field. The melting temperature of PTFE is about 327°C and nowadays operating temperature of this kind of insulators can reach about 300°C and up to 350°C for new generations of machines. All thermal, electrical and mechanical operating stresses, especially high temperature and voltage can be factors of ageing acceleration and/or degradation of the insulators that could cause premature failures. Our present work is focused on the organic insulator behavior at high temperature in order to understand the mechanisms of thermal ageing and degradation. The change of morphology of PTFE during the thermal ageing has been studied. Thin films in PTFE were aged by accelerated method under oxidizing environment (air) and severe thermal constraints between 340 and 450°C. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 39841.</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/app.39841</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2014-02, Vol.131 (3), p.np-n/a |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_miscellaneous_1475521417 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Ageing Aging Applied sciences degradation differential scanning calorimetry (DSC) Exact sciences and technology Materials science morphology Physical properties Polymer industry, paints, wood Polymers Properties and testing Technology of polymers thermogravimetric analysis (TGA) |
title | Morphological evolution of polytetrafluoroethylene in extreme temperature conditions for aerospace applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A20%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphological%20evolution%20of%20polytetrafluoroethylene%20in%20extreme%20temperature%20conditions%20for%20aerospace%20applications&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Huang,%20Xiao%20Lin&rft.date=2014-02-05&rft.volume=131&rft.issue=3&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.39841&rft_dat=%3Cproquest_cross%3E1475521417%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4321-59e9db78e7baf9c7f4a61b247c59bad9e0d2deae37a78169c34675a95e024ba63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1449814869&rft_id=info:pmid/&rfr_iscdi=true |