Loading…
Preparation of superhydrophobic surfaces by cauliflower-like polyaniline
ABSTRACT Cauliflower‐like polyaniline (PANI) was successfully prepared using an interfacial polymerization method. By modification with polydimethylsiloxane (PDMS) using chemical vapor deposition method, the surface wettability of cauliflower‐like PANI can be tailored to be superhydrophobic with a w...
Saved in:
Published in: | Journal of applied polymer science 2014-01, Vol.131 (2), p.np-n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT
Cauliflower‐like polyaniline (PANI) was successfully prepared using an interfacial polymerization method. By modification with polydimethylsiloxane (PDMS) using chemical vapor deposition method, the surface wettability of cauliflower‐like PANI can be tailored to be superhydrophobic with a water contact angle of 160.4°. The deposition of the low‐surface‐energy silicon coating originated from PDMS pyrolysis on the cauliflower‐like PANI was confirmed by X‐ray photoelectron spectroscopy and Fourier Transform Infrared Spectroscopy. The changes in thermal stability and conductivity of the as‐prepared PANI before and after PDMS treatment were also investigated by thermogravimetric analysis and using a four‐probe method. Compared with nanofiber‐shaped PANI by electrodepositing polymerization, the PDMS‐treated cauliflower‐like PANI has superior surface wettability. Our study may open a new way for fabrication of superhydrophobic surfaces by developing novel nanostructured PANI. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 39767. |
---|---|
ISSN: | 0021-8995 1097-4628 |
DOI: | 10.1002/app.39767 |