Loading…

Preparation of superhydrophobic surfaces by cauliflower-like polyaniline

ABSTRACT Cauliflower‐like polyaniline (PANI) was successfully prepared using an interfacial polymerization method. By modification with polydimethylsiloxane (PDMS) using chemical vapor deposition method, the surface wettability of cauliflower‐like PANI can be tailored to be superhydrophobic with a w...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2014-01, Vol.131 (2), p.np-n/a
Main Authors: Cui, Jin-Feng, Bao, Xue-Mei, Sun, Han-Xue, An, Jin, Guo, Jun-Hong, Yang, Bao-Ping, Li, An
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Cauliflower‐like polyaniline (PANI) was successfully prepared using an interfacial polymerization method. By modification with polydimethylsiloxane (PDMS) using chemical vapor deposition method, the surface wettability of cauliflower‐like PANI can be tailored to be superhydrophobic with a water contact angle of 160.4°. The deposition of the low‐surface‐energy silicon coating originated from PDMS pyrolysis on the cauliflower‐like PANI was confirmed by X‐ray photoelectron spectroscopy and Fourier Transform Infrared Spectroscopy. The changes in thermal stability and conductivity of the as‐prepared PANI before and after PDMS treatment were also investigated by thermogravimetric analysis and using a four‐probe method. Compared with nanofiber‐shaped PANI by electrodepositing polymerization, the PDMS‐treated cauliflower‐like PANI has superior surface wettability. Our study may open a new way for fabrication of superhydrophobic surfaces by developing novel nanostructured PANI. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 39767.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.39767