Loading…

Curcumin loaded electrospun Bombyx mori silk nanofibers for drug delivery

Silk fibroin from Bombyx mori silk cocoons was electrospun into silk nanofibers (SNFs). SEM images show that 9% w/v of SNFs was smooth and beadless having an average diameter in the range 30–150 nm. Curcumin (0.5–1.5 wt%) was incorporated into the silk fibroin solution and electrospun to obtain curc...

Full description

Saved in:
Bibliographic Details
Published in:Polymer international 2014-01, Vol.63 (1), p.100-105
Main Authors: Elakkiya, Thangaraju, Malarvizhi, Govindaswamy, Rajiv, Sheeja, Natarajan, Thirupathur Srinivasan
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Silk fibroin from Bombyx mori silk cocoons was electrospun into silk nanofibers (SNFs). SEM images show that 9% w/v of SNFs was smooth and beadless having an average diameter in the range 30–150 nm. Curcumin (0.5–1.5 wt%) was incorporated into the silk fibroin solution and electrospun to obtain curcumin incorporated silk nanofibers (CSNFs) with diameters between 50 and 200 nm. The dispersion of curcumin in the SNFs was confirmed by TEM. The amorphous nature of curcumin upon incorporation into SNFs was confirmed by XRD. The functional groups of SNF and CSNF were confirmed by Fourier transform infrared spectroscopy. The SNFs and CSNFs were thermally stable up to ca 350 °C as evidenced by TGA. The glass transition temperature (Tg) of SNFs (168 °C) increased to 184 °C in the case of CSNFs as confirmed by DSC. The storage modulus, loss modulus and tan δ were determined by dynamic mechanical analysis. The percentages of porosity and water uptake of SNFs were 85% and 150%, respectively. The percentage in vitro cumulative release of curcumin at the end of the tenth day for 0.5, 1 and 1.5 wt% formulations was 82%, 84% and 80%, respectively. © 2013 Society of Chemical Industry Electrospun curcumin loaded bombyx mori silk nanofibrous scaffold as a biocompatible nanocarrier for drug delivery applications.
ISSN:0959-8103
1097-0126
DOI:10.1002/pi.4499