Loading…
Experimental verification of quantum computation
Quantum computers are expected to offer substantial speed-ups over their classical counterparts and to solve problems intractable for classical computers. Beyond such practical significance, the concept of quantum computation opens up fundamental questions, among them the issue of whether quantum co...
Saved in:
Published in: | Nature physics 2013-11, Vol.9 (11), p.727-731 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-p181t-ac1b378252d3f4ed4c63ec2c14fbfc2461eb54becfb40961929a91f95a224a843 |
container_end_page | 731 |
container_issue | 11 |
container_start_page | 727 |
container_title | Nature physics |
container_volume | 9 |
creator | Barz, Stefanie Fitzsimons, Joseph F. Kashefi, Elham Walther, Philip |
description | Quantum computers are expected to offer substantial speed-ups over their classical counterparts and to solve problems intractable for classical computers. Beyond such practical significance, the concept of quantum computation opens up fundamental questions, among them the issue of whether quantum computations can be certified by entities that are inherently unable to compute the results themselves. Here we present the first experimental verification of quantum computation. We show, in theory and experiment, how a verifier with minimal quantum resources can test a significantly more powerful quantum computer. The new verification protocol introduced here uses the framework of blind quantum computing and is independent of the experimental quantum-computation platform used. In our scheme, the verifier is required only to generate single qubits and transmit them to the quantum computer. We experimentally demonstrate this protocol using four photonic qubits and show how the verifier can test the computer’s ability to perform quantum computation.
Can Alice verify the result of a quantum computation that she has delegated to Bob without using a quantum computer? Now she can. A protocol for testing a quantum computer using minimum quantum resources has been proposed and demonstrated. |
doi_str_mv | 10.1038/nphys2763 |
format | article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_miscellaneous_1475558518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1475558518</sourcerecordid><originalsourceid>FETCH-LOGICAL-p181t-ac1b378252d3f4ed4c63ec2c14fbfc2461eb54becfb40961929a91f95a224a843</originalsourceid><addsrcrecordid>eNpd0E1LxDAQBuAgCq6rB_9BwYsI1Uy-e5Rl_YAFL3ouaTbRLm3SbRLRf291ZRFP8zI8DMOL0Dnga8BU3fjh7TMSKegBmoFkvCRMweE-S3qMTmLcYMyIADpDePkx2LHtrU-6K96n6FqjUxt8EVyxzdqn3Bcm9ENOP-tTdOR0F-3Z75yjl7vl8-KhXD3dPy5uV-UAClKpDTRUKsLJmjpm18wIag0xwFzjDGECbMNZY41rGK4EVKTSFbiKa0KYVozO0eXu7jCGbbYx1X0bje067W3IsQYmOeeKg5roxT-6CXn003eT4hVVgko-qaudisPY-lc7_lG4_i6v3pdHvwD1nmJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1459386375</pqid></control><display><type>article</type><title>Experimental verification of quantum computation</title><source>Nature Publishing Group</source><creator>Barz, Stefanie ; Fitzsimons, Joseph F. ; Kashefi, Elham ; Walther, Philip</creator><creatorcontrib>Barz, Stefanie ; Fitzsimons, Joseph F. ; Kashefi, Elham ; Walther, Philip</creatorcontrib><description>Quantum computers are expected to offer substantial speed-ups over their classical counterparts and to solve problems intractable for classical computers. Beyond such practical significance, the concept of quantum computation opens up fundamental questions, among them the issue of whether quantum computations can be certified by entities that are inherently unable to compute the results themselves. Here we present the first experimental verification of quantum computation. We show, in theory and experiment, how a verifier with minimal quantum resources can test a significantly more powerful quantum computer. The new verification protocol introduced here uses the framework of blind quantum computing and is independent of the experimental quantum-computation platform used. In our scheme, the verifier is required only to generate single qubits and transmit them to the quantum computer. We experimentally demonstrate this protocol using four photonic qubits and show how the verifier can test the computer’s ability to perform quantum computation.
Can Alice verify the result of a quantum computation that she has delegated to Bob without using a quantum computer? Now she can. A protocol for testing a quantum computer using minimum quantum resources has been proposed and demonstrated.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys2763</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/2802 ; 639/766/483/481 ; Atomic ; Blinds ; Classical and Continuum Physics ; Complex Systems ; Computer science ; Condensed Matter Physics ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Quantum physics ; Theoretical</subject><ispartof>Nature physics, 2013-11, Vol.9 (11), p.727-731</ispartof><rights>Springer Nature Limited 2013</rights><rights>Copyright Nature Publishing Group Nov 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p181t-ac1b378252d3f4ed4c63ec2c14fbfc2461eb54becfb40961929a91f95a224a843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Barz, Stefanie</creatorcontrib><creatorcontrib>Fitzsimons, Joseph F.</creatorcontrib><creatorcontrib>Kashefi, Elham</creatorcontrib><creatorcontrib>Walther, Philip</creatorcontrib><title>Experimental verification of quantum computation</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Quantum computers are expected to offer substantial speed-ups over their classical counterparts and to solve problems intractable for classical computers. Beyond such practical significance, the concept of quantum computation opens up fundamental questions, among them the issue of whether quantum computations can be certified by entities that are inherently unable to compute the results themselves. Here we present the first experimental verification of quantum computation. We show, in theory and experiment, how a verifier with minimal quantum resources can test a significantly more powerful quantum computer. The new verification protocol introduced here uses the framework of blind quantum computing and is independent of the experimental quantum-computation platform used. In our scheme, the verifier is required only to generate single qubits and transmit them to the quantum computer. We experimentally demonstrate this protocol using four photonic qubits and show how the verifier can test the computer’s ability to perform quantum computation.
Can Alice verify the result of a quantum computation that she has delegated to Bob without using a quantum computer? Now she can. A protocol for testing a quantum computer using minimum quantum resources has been proposed and demonstrated.</description><subject>639/766/483/2802</subject><subject>639/766/483/481</subject><subject>Atomic</subject><subject>Blinds</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Computer science</subject><subject>Condensed Matter Physics</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Quantum physics</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpd0E1LxDAQBuAgCq6rB_9BwYsI1Uy-e5Rl_YAFL3ouaTbRLm3SbRLRf291ZRFP8zI8DMOL0Dnga8BU3fjh7TMSKegBmoFkvCRMweE-S3qMTmLcYMyIADpDePkx2LHtrU-6K96n6FqjUxt8EVyxzdqn3Bcm9ENOP-tTdOR0F-3Z75yjl7vl8-KhXD3dPy5uV-UAClKpDTRUKsLJmjpm18wIag0xwFzjDGECbMNZY41rGK4EVKTSFbiKa0KYVozO0eXu7jCGbbYx1X0bje067W3IsQYmOeeKg5roxT-6CXn003eT4hVVgko-qaudisPY-lc7_lG4_i6v3pdHvwD1nmJk</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Barz, Stefanie</creator><creator>Fitzsimons, Joseph F.</creator><creator>Kashefi, Elham</creator><creator>Walther, Philip</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20131101</creationdate><title>Experimental verification of quantum computation</title><author>Barz, Stefanie ; Fitzsimons, Joseph F. ; Kashefi, Elham ; Walther, Philip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p181t-ac1b378252d3f4ed4c63ec2c14fbfc2461eb54becfb40961929a91f95a224a843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/766/483/2802</topic><topic>639/766/483/481</topic><topic>Atomic</topic><topic>Blinds</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Computer science</topic><topic>Condensed Matter Physics</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Quantum physics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barz, Stefanie</creatorcontrib><creatorcontrib>Fitzsimons, Joseph F.</creatorcontrib><creatorcontrib>Kashefi, Elham</creatorcontrib><creatorcontrib>Walther, Philip</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barz, Stefanie</au><au>Fitzsimons, Joseph F.</au><au>Kashefi, Elham</au><au>Walther, Philip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental verification of quantum computation</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2013-11-01</date><risdate>2013</risdate><volume>9</volume><issue>11</issue><spage>727</spage><epage>731</epage><pages>727-731</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Quantum computers are expected to offer substantial speed-ups over their classical counterparts and to solve problems intractable for classical computers. Beyond such practical significance, the concept of quantum computation opens up fundamental questions, among them the issue of whether quantum computations can be certified by entities that are inherently unable to compute the results themselves. Here we present the first experimental verification of quantum computation. We show, in theory and experiment, how a verifier with minimal quantum resources can test a significantly more powerful quantum computer. The new verification protocol introduced here uses the framework of blind quantum computing and is independent of the experimental quantum-computation platform used. In our scheme, the verifier is required only to generate single qubits and transmit them to the quantum computer. We experimentally demonstrate this protocol using four photonic qubits and show how the verifier can test the computer’s ability to perform quantum computation.
Can Alice verify the result of a quantum computation that she has delegated to Bob without using a quantum computer? Now she can. A protocol for testing a quantum computer using minimum quantum resources has been proposed and demonstrated.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys2763</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2013-11, Vol.9 (11), p.727-731 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_miscellaneous_1475558518 |
source | Nature Publishing Group |
subjects | 639/766/483/2802 639/766/483/481 Atomic Blinds Classical and Continuum Physics Complex Systems Computer science Condensed Matter Physics Mathematical and Computational Physics Molecular Optical and Plasma Physics Physics Quantum physics Theoretical |
title | Experimental verification of quantum computation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20verification%20of%20quantum%20computation&rft.jtitle=Nature%20physics&rft.au=Barz,%20Stefanie&rft.date=2013-11-01&rft.volume=9&rft.issue=11&rft.spage=727&rft.epage=731&rft.pages=727-731&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys2763&rft_dat=%3Cproquest_sprin%3E1475558518%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p181t-ac1b378252d3f4ed4c63ec2c14fbfc2461eb54becfb40961929a91f95a224a843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1459386375&rft_id=info:pmid/&rfr_iscdi=true |