Loading…

Experimental verification of quantum computation

Quantum computers are expected to offer substantial speed-ups over their classical counterparts and to solve problems intractable for classical computers. Beyond such practical significance, the concept of quantum computation opens up fundamental questions, among them the issue of whether quantum co...

Full description

Saved in:
Bibliographic Details
Published in:Nature physics 2013-11, Vol.9 (11), p.727-731
Main Authors: Barz, Stefanie, Fitzsimons, Joseph F., Kashefi, Elham, Walther, Philip
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-p181t-ac1b378252d3f4ed4c63ec2c14fbfc2461eb54becfb40961929a91f95a224a843
container_end_page 731
container_issue 11
container_start_page 727
container_title Nature physics
container_volume 9
creator Barz, Stefanie
Fitzsimons, Joseph F.
Kashefi, Elham
Walther, Philip
description Quantum computers are expected to offer substantial speed-ups over their classical counterparts and to solve problems intractable for classical computers. Beyond such practical significance, the concept of quantum computation opens up fundamental questions, among them the issue of whether quantum computations can be certified by entities that are inherently unable to compute the results themselves. Here we present the first experimental verification of quantum computation. We show, in theory and experiment, how a verifier with minimal quantum resources can test a significantly more powerful quantum computer. The new verification protocol introduced here uses the framework of blind quantum computing and is independent of the experimental quantum-computation platform used. In our scheme, the verifier is required only to generate single qubits and transmit them to the quantum computer. We experimentally demonstrate this protocol using four photonic qubits and show how the verifier can test the computer’s ability to perform quantum computation. Can Alice verify the result of a quantum computation that she has delegated to Bob without using a quantum computer? Now she can. A protocol for testing a quantum computer using minimum quantum resources has been proposed and demonstrated.
doi_str_mv 10.1038/nphys2763
format article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_miscellaneous_1475558518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1475558518</sourcerecordid><originalsourceid>FETCH-LOGICAL-p181t-ac1b378252d3f4ed4c63ec2c14fbfc2461eb54becfb40961929a91f95a224a843</originalsourceid><addsrcrecordid>eNpd0E1LxDAQBuAgCq6rB_9BwYsI1Uy-e5Rl_YAFL3ouaTbRLm3SbRLRf291ZRFP8zI8DMOL0Dnga8BU3fjh7TMSKegBmoFkvCRMweE-S3qMTmLcYMyIADpDePkx2LHtrU-6K96n6FqjUxt8EVyxzdqn3Bcm9ENOP-tTdOR0F-3Z75yjl7vl8-KhXD3dPy5uV-UAClKpDTRUKsLJmjpm18wIag0xwFzjDGECbMNZY41rGK4EVKTSFbiKa0KYVozO0eXu7jCGbbYx1X0bje067W3IsQYmOeeKg5roxT-6CXn003eT4hVVgko-qaudisPY-lc7_lG4_i6v3pdHvwD1nmJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1459386375</pqid></control><display><type>article</type><title>Experimental verification of quantum computation</title><source>Nature Publishing Group</source><creator>Barz, Stefanie ; Fitzsimons, Joseph F. ; Kashefi, Elham ; Walther, Philip</creator><creatorcontrib>Barz, Stefanie ; Fitzsimons, Joseph F. ; Kashefi, Elham ; Walther, Philip</creatorcontrib><description>Quantum computers are expected to offer substantial speed-ups over their classical counterparts and to solve problems intractable for classical computers. Beyond such practical significance, the concept of quantum computation opens up fundamental questions, among them the issue of whether quantum computations can be certified by entities that are inherently unable to compute the results themselves. Here we present the first experimental verification of quantum computation. We show, in theory and experiment, how a verifier with minimal quantum resources can test a significantly more powerful quantum computer. The new verification protocol introduced here uses the framework of blind quantum computing and is independent of the experimental quantum-computation platform used. In our scheme, the verifier is required only to generate single qubits and transmit them to the quantum computer. We experimentally demonstrate this protocol using four photonic qubits and show how the verifier can test the computer’s ability to perform quantum computation. Can Alice verify the result of a quantum computation that she has delegated to Bob without using a quantum computer? Now she can. A protocol for testing a quantum computer using minimum quantum resources has been proposed and demonstrated.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys2763</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/2802 ; 639/766/483/481 ; Atomic ; Blinds ; Classical and Continuum Physics ; Complex Systems ; Computer science ; Condensed Matter Physics ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Quantum physics ; Theoretical</subject><ispartof>Nature physics, 2013-11, Vol.9 (11), p.727-731</ispartof><rights>Springer Nature Limited 2013</rights><rights>Copyright Nature Publishing Group Nov 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p181t-ac1b378252d3f4ed4c63ec2c14fbfc2461eb54becfb40961929a91f95a224a843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Barz, Stefanie</creatorcontrib><creatorcontrib>Fitzsimons, Joseph F.</creatorcontrib><creatorcontrib>Kashefi, Elham</creatorcontrib><creatorcontrib>Walther, Philip</creatorcontrib><title>Experimental verification of quantum computation</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Quantum computers are expected to offer substantial speed-ups over their classical counterparts and to solve problems intractable for classical computers. Beyond such practical significance, the concept of quantum computation opens up fundamental questions, among them the issue of whether quantum computations can be certified by entities that are inherently unable to compute the results themselves. Here we present the first experimental verification of quantum computation. We show, in theory and experiment, how a verifier with minimal quantum resources can test a significantly more powerful quantum computer. The new verification protocol introduced here uses the framework of blind quantum computing and is independent of the experimental quantum-computation platform used. In our scheme, the verifier is required only to generate single qubits and transmit them to the quantum computer. We experimentally demonstrate this protocol using four photonic qubits and show how the verifier can test the computer’s ability to perform quantum computation. Can Alice verify the result of a quantum computation that she has delegated to Bob without using a quantum computer? Now she can. A protocol for testing a quantum computer using minimum quantum resources has been proposed and demonstrated.</description><subject>639/766/483/2802</subject><subject>639/766/483/481</subject><subject>Atomic</subject><subject>Blinds</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Computer science</subject><subject>Condensed Matter Physics</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Quantum physics</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpd0E1LxDAQBuAgCq6rB_9BwYsI1Uy-e5Rl_YAFL3ouaTbRLm3SbRLRf291ZRFP8zI8DMOL0Dnga8BU3fjh7TMSKegBmoFkvCRMweE-S3qMTmLcYMyIADpDePkx2LHtrU-6K96n6FqjUxt8EVyxzdqn3Bcm9ENOP-tTdOR0F-3Z75yjl7vl8-KhXD3dPy5uV-UAClKpDTRUKsLJmjpm18wIag0xwFzjDGECbMNZY41rGK4EVKTSFbiKa0KYVozO0eXu7jCGbbYx1X0bje067W3IsQYmOeeKg5roxT-6CXn003eT4hVVgko-qaudisPY-lc7_lG4_i6v3pdHvwD1nmJk</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Barz, Stefanie</creator><creator>Fitzsimons, Joseph F.</creator><creator>Kashefi, Elham</creator><creator>Walther, Philip</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20131101</creationdate><title>Experimental verification of quantum computation</title><author>Barz, Stefanie ; Fitzsimons, Joseph F. ; Kashefi, Elham ; Walther, Philip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p181t-ac1b378252d3f4ed4c63ec2c14fbfc2461eb54becfb40961929a91f95a224a843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/766/483/2802</topic><topic>639/766/483/481</topic><topic>Atomic</topic><topic>Blinds</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Computer science</topic><topic>Condensed Matter Physics</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Quantum physics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barz, Stefanie</creatorcontrib><creatorcontrib>Fitzsimons, Joseph F.</creatorcontrib><creatorcontrib>Kashefi, Elham</creatorcontrib><creatorcontrib>Walther, Philip</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barz, Stefanie</au><au>Fitzsimons, Joseph F.</au><au>Kashefi, Elham</au><au>Walther, Philip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental verification of quantum computation</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2013-11-01</date><risdate>2013</risdate><volume>9</volume><issue>11</issue><spage>727</spage><epage>731</epage><pages>727-731</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Quantum computers are expected to offer substantial speed-ups over their classical counterparts and to solve problems intractable for classical computers. Beyond such practical significance, the concept of quantum computation opens up fundamental questions, among them the issue of whether quantum computations can be certified by entities that are inherently unable to compute the results themselves. Here we present the first experimental verification of quantum computation. We show, in theory and experiment, how a verifier with minimal quantum resources can test a significantly more powerful quantum computer. The new verification protocol introduced here uses the framework of blind quantum computing and is independent of the experimental quantum-computation platform used. In our scheme, the verifier is required only to generate single qubits and transmit them to the quantum computer. We experimentally demonstrate this protocol using four photonic qubits and show how the verifier can test the computer’s ability to perform quantum computation. Can Alice verify the result of a quantum computation that she has delegated to Bob without using a quantum computer? Now she can. A protocol for testing a quantum computer using minimum quantum resources has been proposed and demonstrated.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys2763</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2013-11, Vol.9 (11), p.727-731
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_miscellaneous_1475558518
source Nature Publishing Group
subjects 639/766/483/2802
639/766/483/481
Atomic
Blinds
Classical and Continuum Physics
Complex Systems
Computer science
Condensed Matter Physics
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Quantum physics
Theoretical
title Experimental verification of quantum computation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20verification%20of%20quantum%20computation&rft.jtitle=Nature%20physics&rft.au=Barz,%20Stefanie&rft.date=2013-11-01&rft.volume=9&rft.issue=11&rft.spage=727&rft.epage=731&rft.pages=727-731&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys2763&rft_dat=%3Cproquest_sprin%3E1475558518%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p181t-ac1b378252d3f4ed4c63ec2c14fbfc2461eb54becfb40961929a91f95a224a843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1459386375&rft_id=info:pmid/&rfr_iscdi=true