Loading…
Thermodynamic assessment and experimental study of Mg–Gd alloys
•Solid solubity of Gd in (Mg) experimentally studied.•Consistent thermodynamic calculation of Mg–Gd phase diagram developed.•Vapor pressure and enthalpy of formation data analyzed by Calphad method.•Three error sources identified in earlier approximate enthalpy derivation.•Claimed systematic trends...
Saved in:
Published in: | Journal of alloys and compounds 2013-12, Vol.581, p.166-177 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-16b44a331db8eced22f2dafb7ff533ddcc53ad1fad846ae5a5cc3d019ca0f8e23 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-16b44a331db8eced22f2dafb7ff533ddcc53ad1fad846ae5a5cc3d019ca0f8e23 |
container_end_page | 177 |
container_issue | |
container_start_page | 166 |
container_title | Journal of alloys and compounds |
container_volume | 581 |
creator | Hampl, M. Blawert, C. Silva Campos, M.R. Hort, N. Peng, Q. Kainer, K.U. Schmid-Fetzer, R. |
description | •Solid solubity of Gd in (Mg) experimentally studied.•Consistent thermodynamic calculation of Mg–Gd phase diagram developed.•Vapor pressure and enthalpy of formation data analyzed by Calphad method.•Three error sources identified in earlier approximate enthalpy derivation.•Claimed systematic trends in enthalpies of formation disputed.
The solid solubility of Gd in (Mg) is studied experimentally using microstructure, chemical and EDX analysis on permanent mould chill cast samples which were annealed for 1–14days at 300–550°C. Based on those key data and all the critically assessed experimental phase equilibrium and thermodynamic data of the Mg–Gd system two Calphad-type thermodynamic descriptions are developed. This provides calculated phase diagrams, and an inherent inconsistency between the vapor pressure data and the Mg-rich phase diagram is indicated. A previous misperception of “experimental” enthalpy of formation data of binary GdxMgy intermetallic compounds is also revealed. The assumption of systematic trends in these key thermodynamic data for the series of rare earth elements R=(La, Ce, Pr, Nd, Sm, Gd) is scrutinized. |
doi_str_mv | 10.1016/j.jallcom.2013.07.042 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1475560674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838813016551</els_id><sourcerecordid>1475560674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-16b44a331db8eced22f2dafb7ff533ddcc53ad1fad846ae5a5cc3d019ca0f8e23</originalsourceid><addsrcrecordid>eNqFkMtKA0EQRRtRMD4-QZiN4GbGfsyjs5IQfIHiRtdNpbtaJ8wjdk3E2fkP_qFfYocEt66KgnPr1r2MnQmeCS7Ky2W2hKaxfZtJLlTGq4znco9NhK5UmpfldJ9N-FQWqVZaH7IjoiXnXEyVmLDZ8xuGtndjB21tEyBCoha7IYHOJfi5wlBvVmgSGtZuTHqfPL7-fH3fuiSa9iOdsAMPDeHpbh6zl5vr5_ld-vB0ez-fPaRWVXJIRbnIc1BKuIVGi05KLx34ReV9oZRz1hYKnPDgdF4CFlBYq1z80gL3GqU6Zhfbu6vQv6-RBtPWZLFpoMN-TUbkVVGUvKzyiBZb1IaeKKA3q5gCwmgEN5vKzNLsKjObygyvTKws6s53FkAWGh-gszX9iWWlpdRqGrmrLYcx70eNwZCtsYup6oB2MK6v_3H6BQVlhxk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1475560674</pqid></control><display><type>article</type><title>Thermodynamic assessment and experimental study of Mg–Gd alloys</title><source>Elsevier</source><creator>Hampl, M. ; Blawert, C. ; Silva Campos, M.R. ; Hort, N. ; Peng, Q. ; Kainer, K.U. ; Schmid-Fetzer, R.</creator><creatorcontrib>Hampl, M. ; Blawert, C. ; Silva Campos, M.R. ; Hort, N. ; Peng, Q. ; Kainer, K.U. ; Schmid-Fetzer, R.</creatorcontrib><description>•Solid solubity of Gd in (Mg) experimentally studied.•Consistent thermodynamic calculation of Mg–Gd phase diagram developed.•Vapor pressure and enthalpy of formation data analyzed by Calphad method.•Three error sources identified in earlier approximate enthalpy derivation.•Claimed systematic trends in enthalpies of formation disputed.
The solid solubility of Gd in (Mg) is studied experimentally using microstructure, chemical and EDX analysis on permanent mould chill cast samples which were annealed for 1–14days at 300–550°C. Based on those key data and all the critically assessed experimental phase equilibrium and thermodynamic data of the Mg–Gd system two Calphad-type thermodynamic descriptions are developed. This provides calculated phase diagrams, and an inherent inconsistency between the vapor pressure data and the Mg-rich phase diagram is indicated. A previous misperception of “experimental” enthalpy of formation data of binary GdxMgy intermetallic compounds is also revealed. The assumption of systematic trends in these key thermodynamic data for the series of rare earth elements R=(La, Ce, Pr, Nd, Sm, Gd) is scrutinized.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2013.07.042</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Alloys ; Annealing ; Applied sciences ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Heat treatment ; Materials science ; Metals. Metallurgy ; Microstructure ; Phase diagrams ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Phase diagrams of metals and alloys ; Physics ; Production techniques ; Rare earth alloys and compounds ; Thermal properties of condensed matter ; Thermal properties of crystalline solids ; Thermodynamic modelling ; Thermodynamic properties</subject><ispartof>Journal of alloys and compounds, 2013-12, Vol.581, p.166-177</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-16b44a331db8eced22f2dafb7ff533ddcc53ad1fad846ae5a5cc3d019ca0f8e23</citedby><cites>FETCH-LOGICAL-c372t-16b44a331db8eced22f2dafb7ff533ddcc53ad1fad846ae5a5cc3d019ca0f8e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27822839$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hampl, M.</creatorcontrib><creatorcontrib>Blawert, C.</creatorcontrib><creatorcontrib>Silva Campos, M.R.</creatorcontrib><creatorcontrib>Hort, N.</creatorcontrib><creatorcontrib>Peng, Q.</creatorcontrib><creatorcontrib>Kainer, K.U.</creatorcontrib><creatorcontrib>Schmid-Fetzer, R.</creatorcontrib><title>Thermodynamic assessment and experimental study of Mg–Gd alloys</title><title>Journal of alloys and compounds</title><description>•Solid solubity of Gd in (Mg) experimentally studied.•Consistent thermodynamic calculation of Mg–Gd phase diagram developed.•Vapor pressure and enthalpy of formation data analyzed by Calphad method.•Three error sources identified in earlier approximate enthalpy derivation.•Claimed systematic trends in enthalpies of formation disputed.
The solid solubility of Gd in (Mg) is studied experimentally using microstructure, chemical and EDX analysis on permanent mould chill cast samples which were annealed for 1–14days at 300–550°C. Based on those key data and all the critically assessed experimental phase equilibrium and thermodynamic data of the Mg–Gd system two Calphad-type thermodynamic descriptions are developed. This provides calculated phase diagrams, and an inherent inconsistency between the vapor pressure data and the Mg-rich phase diagram is indicated. A previous misperception of “experimental” enthalpy of formation data of binary GdxMgy intermetallic compounds is also revealed. The assumption of systematic trends in these key thermodynamic data for the series of rare earth elements R=(La, Ce, Pr, Nd, Sm, Gd) is scrutinized.</description><subject>Alloys</subject><subject>Annealing</subject><subject>Applied sciences</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Heat treatment</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Phase diagrams</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Phase diagrams of metals and alloys</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Rare earth alloys and compounds</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of crystalline solids</subject><subject>Thermodynamic modelling</subject><subject>Thermodynamic properties</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKA0EQRRtRMD4-QZiN4GbGfsyjs5IQfIHiRtdNpbtaJ8wjdk3E2fkP_qFfYocEt66KgnPr1r2MnQmeCS7Ky2W2hKaxfZtJLlTGq4znco9NhK5UmpfldJ9N-FQWqVZaH7IjoiXnXEyVmLDZ8xuGtndjB21tEyBCoha7IYHOJfi5wlBvVmgSGtZuTHqfPL7-fH3fuiSa9iOdsAMPDeHpbh6zl5vr5_ld-vB0ez-fPaRWVXJIRbnIc1BKuIVGi05KLx34ReV9oZRz1hYKnPDgdF4CFlBYq1z80gL3GqU6Zhfbu6vQv6-RBtPWZLFpoMN-TUbkVVGUvKzyiBZb1IaeKKA3q5gCwmgEN5vKzNLsKjObygyvTKws6s53FkAWGh-gszX9iWWlpdRqGrmrLYcx70eNwZCtsYup6oB2MK6v_3H6BQVlhxk</recordid><startdate>20131225</startdate><enddate>20131225</enddate><creator>Hampl, M.</creator><creator>Blawert, C.</creator><creator>Silva Campos, M.R.</creator><creator>Hort, N.</creator><creator>Peng, Q.</creator><creator>Kainer, K.U.</creator><creator>Schmid-Fetzer, R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20131225</creationdate><title>Thermodynamic assessment and experimental study of Mg–Gd alloys</title><author>Hampl, M. ; Blawert, C. ; Silva Campos, M.R. ; Hort, N. ; Peng, Q. ; Kainer, K.U. ; Schmid-Fetzer, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-16b44a331db8eced22f2dafb7ff533ddcc53ad1fad846ae5a5cc3d019ca0f8e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alloys</topic><topic>Annealing</topic><topic>Applied sciences</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Heat treatment</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Phase diagrams</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Phase diagrams of metals and alloys</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Rare earth alloys and compounds</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of crystalline solids</topic><topic>Thermodynamic modelling</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hampl, M.</creatorcontrib><creatorcontrib>Blawert, C.</creatorcontrib><creatorcontrib>Silva Campos, M.R.</creatorcontrib><creatorcontrib>Hort, N.</creatorcontrib><creatorcontrib>Peng, Q.</creatorcontrib><creatorcontrib>Kainer, K.U.</creatorcontrib><creatorcontrib>Schmid-Fetzer, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hampl, M.</au><au>Blawert, C.</au><au>Silva Campos, M.R.</au><au>Hort, N.</au><au>Peng, Q.</au><au>Kainer, K.U.</au><au>Schmid-Fetzer, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic assessment and experimental study of Mg–Gd alloys</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2013-12-25</date><risdate>2013</risdate><volume>581</volume><spage>166</spage><epage>177</epage><pages>166-177</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>•Solid solubity of Gd in (Mg) experimentally studied.•Consistent thermodynamic calculation of Mg–Gd phase diagram developed.•Vapor pressure and enthalpy of formation data analyzed by Calphad method.•Three error sources identified in earlier approximate enthalpy derivation.•Claimed systematic trends in enthalpies of formation disputed.
The solid solubility of Gd in (Mg) is studied experimentally using microstructure, chemical and EDX analysis on permanent mould chill cast samples which were annealed for 1–14days at 300–550°C. Based on those key data and all the critically assessed experimental phase equilibrium and thermodynamic data of the Mg–Gd system two Calphad-type thermodynamic descriptions are developed. This provides calculated phase diagrams, and an inherent inconsistency between the vapor pressure data and the Mg-rich phase diagram is indicated. A previous misperception of “experimental” enthalpy of formation data of binary GdxMgy intermetallic compounds is also revealed. The assumption of systematic trends in these key thermodynamic data for the series of rare earth elements R=(La, Ce, Pr, Nd, Sm, Gd) is scrutinized.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2013.07.042</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2013-12, Vol.581, p.166-177 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_miscellaneous_1475560674 |
source | Elsevier |
subjects | Alloys Annealing Applied sciences Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Exact sciences and technology Heat treatment Materials science Metals. Metallurgy Microstructure Phase diagrams Phase diagrams and microstructures developed by solidification and solid-solid phase transformations Phase diagrams of metals and alloys Physics Production techniques Rare earth alloys and compounds Thermal properties of condensed matter Thermal properties of crystalline solids Thermodynamic modelling Thermodynamic properties |
title | Thermodynamic assessment and experimental study of Mg–Gd alloys |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A57%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20assessment%20and%20experimental%20study%20of%20Mg%E2%80%93Gd%20alloys&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Hampl,%20M.&rft.date=2013-12-25&rft.volume=581&rft.spage=166&rft.epage=177&rft.pages=166-177&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2013.07.042&rft_dat=%3Cproquest_cross%3E1475560674%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-16b44a331db8eced22f2dafb7ff533ddcc53ad1fad846ae5a5cc3d019ca0f8e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1475560674&rft_id=info:pmid/&rfr_iscdi=true |