Loading…

Nitrogen removal performance using anaerobic ammonium oxidation at low temperatures

An anaerobic ammonium oxidation (anammox) process for ammonia-rich wastewater treatment has not been reported at temperatures below 15 °C. This study used a gel carrier with entrapped anammox bacteria to obtain a stable nitrogen removal performance at low temperatures. In a continuous feeding test,...

Full description

Saved in:
Bibliographic Details
Published in:FEMS microbiology letters 2008-05, Vol.282 (1), p.32-38
Main Authors: Isaka, Kazuichi, Date, Yasuhiro, Kimura, Yuya, Sumino, Tatsuo, Tsuneda, Satoshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6055-b3762bef102fe1a6d48331234c528b5b5e83190042aea9f822bd30de29c5ab3f3
cites cdi_FETCH-LOGICAL-c6055-b3762bef102fe1a6d48331234c528b5b5e83190042aea9f822bd30de29c5ab3f3
container_end_page 38
container_issue 1
container_start_page 32
container_title FEMS microbiology letters
container_volume 282
creator Isaka, Kazuichi
Date, Yasuhiro
Kimura, Yuya
Sumino, Tatsuo
Tsuneda, Satoshi
description An anaerobic ammonium oxidation (anammox) process for ammonia-rich wastewater treatment has not been reported at temperatures below 15 °C. This study used a gel carrier with entrapped anammox bacteria to obtain a stable nitrogen removal performance at low temperatures. In a continuous feeding test, a high nitrogen conversion rate (6.2 kg N m⁻³ day⁻¹) was confirmed at 32 °C. Nitrogen removal activity decreased gradually with decreasing operation temperature; however, it still occurred at 6 °C. Nitrogen conversion rates at 22 and 6.3 °C were 2.8 and 0.36 kg N m⁻³ day⁻¹, respectively. Moreover, the stability of anammox activity below 20 °C was confirmed for more than 130 days. In batch experiments, anammox gel carriers were characterized with respect to temperature. The optimum temperature for anammox bacteria was found to be 37 °C. Furthermore, it was clear that the temperature dependence changed at about 28 °C. The apparent activation energy in the temperature range from 22 to 28 °C was calculated as 93 kJ mol⁻¹, and that in the range from 28 to 37 °C was 33 kJ mol⁻¹. This value agrees with the result of a continuous feeding test (94 kJ mol⁻¹, between 6 and 22 °C). The nitrogen removal performance demonstrated at the low temperatures used in this study will open the door for the application of anammox processes to many types of industrial wastewater treatment.
doi_str_mv 10.1111/j.1574-6968.2008.01095.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_14854943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1574-6968.2008.01095.x</oup_id><sourcerecordid>14854943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6055-b3762bef102fe1a6d48331234c528b5b5e83190042aea9f822bd30de29c5ab3f3</originalsourceid><addsrcrecordid>eNqNkMFu1DAQhi0EotvCK4AlBLcsYzvOOgcOqKIFaYFD6dmaJJOVV0m82Andvj0OWRUJgYQvtjTf7_n1McYFrEU6b_droTd5VpSFWUsAswYBpV4fH7HVw-AxW4HamCxNNmfsPMY9AOQSiqfsTBiltTTlit18cWPwOxp4oN7_wI4fKLQ-9DjUxKfohh3HASn4ytUc-94Pbuq5P7oGR-cHjiPv_B0fqU9BHKdA8Rl70mIX6fnpvmC3Vx--XX7Mtl-vP12-32Z1AVpnldoUsqJWgGxJYNHkRikhVV6napWuNBklyrkzEpatkbJqFDQky1pjpVp1wd4s_x6C_z5RHG3vYk1dhwP5KVqRG52XuUrgqz_AvZ_CkLpZqaDQMlcSEmUWqg4-xkCtPQTXY7i3Auys3e7tbNfOdu2s3f7Sbo8p-uK0YKp6an4HT54T8PoEYKyxa0PS6-IDJ0GWUog8ce8W7s51dP_fBezV5-38Snm15P10-Ec6-1v9l0uqRW9xF1Kz2xsJQiXIgDCgfgKTe7Xy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306524320</pqid></control><display><type>article</type><title>Nitrogen removal performance using anaerobic ammonium oxidation at low temperatures</title><source>Oxford Journals Online</source><creator>Isaka, Kazuichi ; Date, Yasuhiro ; Kimura, Yuya ; Sumino, Tatsuo ; Tsuneda, Satoshi</creator><creatorcontrib>Isaka, Kazuichi ; Date, Yasuhiro ; Kimura, Yuya ; Sumino, Tatsuo ; Tsuneda, Satoshi</creatorcontrib><description>An anaerobic ammonium oxidation (anammox) process for ammonia-rich wastewater treatment has not been reported at temperatures below 15 °C. This study used a gel carrier with entrapped anammox bacteria to obtain a stable nitrogen removal performance at low temperatures. In a continuous feeding test, a high nitrogen conversion rate (6.2 kg N m⁻³ day⁻¹) was confirmed at 32 °C. Nitrogen removal activity decreased gradually with decreasing operation temperature; however, it still occurred at 6 °C. Nitrogen conversion rates at 22 and 6.3 °C were 2.8 and 0.36 kg N m⁻³ day⁻¹, respectively. Moreover, the stability of anammox activity below 20 °C was confirmed for more than 130 days. In batch experiments, anammox gel carriers were characterized with respect to temperature. The optimum temperature for anammox bacteria was found to be 37 °C. Furthermore, it was clear that the temperature dependence changed at about 28 °C. The apparent activation energy in the temperature range from 22 to 28 °C was calculated as 93 kJ mol⁻¹, and that in the range from 28 to 37 °C was 33 kJ mol⁻¹. This value agrees with the result of a continuous feeding test (94 kJ mol⁻¹, between 6 and 22 °C). The nitrogen removal performance demonstrated at the low temperatures used in this study will open the door for the application of anammox processes to many types of industrial wastewater treatment.</description><identifier>ISSN: 0378-1097</identifier><identifier>EISSN: 1574-6968</identifier><identifier>DOI: 10.1111/j.1574-6968.2008.01095.x</identifier><identifier>PMID: 18355289</identifier><identifier>CODEN: FMLED7</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Ammonia ; Ammonia - metabolism ; Ammonia-oxidizing bacteria ; Ammonium ; anaerobic ; Anaerobic processes ; Anaerobiosis ; anammox ; Bacteria ; Bacteria - classification ; Bacteria - genetics ; Bacteria - metabolism ; Biodegradation, Environmental ; Biological and medical sciences ; Bioreactors ; Conversion ; DNA, Bacterial - genetics ; DNA, Ribosomal - genetics ; Feeding ; Fundamental and applied biological sciences. Psychology ; gel entrapment ; immobilization ; Industrial wastes ; Industrial wastewater ; Industrial wastewater treatment ; Low temperature ; Microbiology ; Nitrogen ; Nitrogen removal ; Oxidation ; Oxidation-Reduction ; Phylogeny ; RNA, Ribosomal, 16S - genetics ; Sewage - microbiology ; Temperature ; Temperature dependence ; Temperature effects ; Waste Disposal, Fluid ; Wastewater treatment ; Water treatment</subject><ispartof>FEMS microbiology letters, 2008-05, Vol.282 (1), p.32-38</ispartof><rights>2008 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved 2008</rights><rights>2008 Federation of European Microbiological Societies Published by Blackwell Publishing Ltd</rights><rights>2008 INIST-CNRS</rights><rights>2008 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6055-b3762bef102fe1a6d48331234c528b5b5e83190042aea9f822bd30de29c5ab3f3</citedby><cites>FETCH-LOGICAL-c6055-b3762bef102fe1a6d48331234c528b5b5e83190042aea9f822bd30de29c5ab3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20292114$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18355289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Isaka, Kazuichi</creatorcontrib><creatorcontrib>Date, Yasuhiro</creatorcontrib><creatorcontrib>Kimura, Yuya</creatorcontrib><creatorcontrib>Sumino, Tatsuo</creatorcontrib><creatorcontrib>Tsuneda, Satoshi</creatorcontrib><title>Nitrogen removal performance using anaerobic ammonium oxidation at low temperatures</title><title>FEMS microbiology letters</title><addtitle>FEMS Microbiol Lett</addtitle><description>An anaerobic ammonium oxidation (anammox) process for ammonia-rich wastewater treatment has not been reported at temperatures below 15 °C. This study used a gel carrier with entrapped anammox bacteria to obtain a stable nitrogen removal performance at low temperatures. In a continuous feeding test, a high nitrogen conversion rate (6.2 kg N m⁻³ day⁻¹) was confirmed at 32 °C. Nitrogen removal activity decreased gradually with decreasing operation temperature; however, it still occurred at 6 °C. Nitrogen conversion rates at 22 and 6.3 °C were 2.8 and 0.36 kg N m⁻³ day⁻¹, respectively. Moreover, the stability of anammox activity below 20 °C was confirmed for more than 130 days. In batch experiments, anammox gel carriers were characterized with respect to temperature. The optimum temperature for anammox bacteria was found to be 37 °C. Furthermore, it was clear that the temperature dependence changed at about 28 °C. The apparent activation energy in the temperature range from 22 to 28 °C was calculated as 93 kJ mol⁻¹, and that in the range from 28 to 37 °C was 33 kJ mol⁻¹. This value agrees with the result of a continuous feeding test (94 kJ mol⁻¹, between 6 and 22 °C). The nitrogen removal performance demonstrated at the low temperatures used in this study will open the door for the application of anammox processes to many types of industrial wastewater treatment.</description><subject>Ammonia</subject><subject>Ammonia - metabolism</subject><subject>Ammonia-oxidizing bacteria</subject><subject>Ammonium</subject><subject>anaerobic</subject><subject>Anaerobic processes</subject><subject>Anaerobiosis</subject><subject>anammox</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Biodegradation, Environmental</subject><subject>Biological and medical sciences</subject><subject>Bioreactors</subject><subject>Conversion</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Ribosomal - genetics</subject><subject>Feeding</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gel entrapment</subject><subject>immobilization</subject><subject>Industrial wastes</subject><subject>Industrial wastewater</subject><subject>Industrial wastewater treatment</subject><subject>Low temperature</subject><subject>Microbiology</subject><subject>Nitrogen</subject><subject>Nitrogen removal</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Phylogeny</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Sewage - microbiology</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Temperature effects</subject><subject>Waste Disposal, Fluid</subject><subject>Wastewater treatment</subject><subject>Water treatment</subject><issn>0378-1097</issn><issn>1574-6968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkMFu1DAQhi0EotvCK4AlBLcsYzvOOgcOqKIFaYFD6dmaJJOVV0m82Andvj0OWRUJgYQvtjTf7_n1McYFrEU6b_droTd5VpSFWUsAswYBpV4fH7HVw-AxW4HamCxNNmfsPMY9AOQSiqfsTBiltTTlit18cWPwOxp4oN7_wI4fKLQ-9DjUxKfohh3HASn4ytUc-94Pbuq5P7oGR-cHjiPv_B0fqU9BHKdA8Rl70mIX6fnpvmC3Vx--XX7Mtl-vP12-32Z1AVpnldoUsqJWgGxJYNHkRikhVV6napWuNBklyrkzEpatkbJqFDQky1pjpVp1wd4s_x6C_z5RHG3vYk1dhwP5KVqRG52XuUrgqz_AvZ_CkLpZqaDQMlcSEmUWqg4-xkCtPQTXY7i3Auys3e7tbNfOdu2s3f7Sbo8p-uK0YKp6an4HT54T8PoEYKyxa0PS6-IDJ0GWUog8ce8W7s51dP_fBezV5-38Snm15P10-Ec6-1v9l0uqRW9xF1Kz2xsJQiXIgDCgfgKTe7Xy</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Isaka, Kazuichi</creator><creator>Date, Yasuhiro</creator><creator>Kimura, Yuya</creator><creator>Sumino, Tatsuo</creator><creator>Tsuneda, Satoshi</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Oxford University Press</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>200805</creationdate><title>Nitrogen removal performance using anaerobic ammonium oxidation at low temperatures</title><author>Isaka, Kazuichi ; Date, Yasuhiro ; Kimura, Yuya ; Sumino, Tatsuo ; Tsuneda, Satoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6055-b3762bef102fe1a6d48331234c528b5b5e83190042aea9f822bd30de29c5ab3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Ammonia</topic><topic>Ammonia - metabolism</topic><topic>Ammonia-oxidizing bacteria</topic><topic>Ammonium</topic><topic>anaerobic</topic><topic>Anaerobic processes</topic><topic>Anaerobiosis</topic><topic>anammox</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Biodegradation, Environmental</topic><topic>Biological and medical sciences</topic><topic>Bioreactors</topic><topic>Conversion</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Ribosomal - genetics</topic><topic>Feeding</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gel entrapment</topic><topic>immobilization</topic><topic>Industrial wastes</topic><topic>Industrial wastewater</topic><topic>Industrial wastewater treatment</topic><topic>Low temperature</topic><topic>Microbiology</topic><topic>Nitrogen</topic><topic>Nitrogen removal</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Phylogeny</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Sewage - microbiology</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Temperature effects</topic><topic>Waste Disposal, Fluid</topic><topic>Wastewater treatment</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Isaka, Kazuichi</creatorcontrib><creatorcontrib>Date, Yasuhiro</creatorcontrib><creatorcontrib>Kimura, Yuya</creatorcontrib><creatorcontrib>Sumino, Tatsuo</creatorcontrib><creatorcontrib>Tsuneda, Satoshi</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>FEMS microbiology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Isaka, Kazuichi</au><au>Date, Yasuhiro</au><au>Kimura, Yuya</au><au>Sumino, Tatsuo</au><au>Tsuneda, Satoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen removal performance using anaerobic ammonium oxidation at low temperatures</atitle><jtitle>FEMS microbiology letters</jtitle><addtitle>FEMS Microbiol Lett</addtitle><date>2008-05</date><risdate>2008</risdate><volume>282</volume><issue>1</issue><spage>32</spage><epage>38</epage><pages>32-38</pages><issn>0378-1097</issn><eissn>1574-6968</eissn><coden>FMLED7</coden><abstract>An anaerobic ammonium oxidation (anammox) process for ammonia-rich wastewater treatment has not been reported at temperatures below 15 °C. This study used a gel carrier with entrapped anammox bacteria to obtain a stable nitrogen removal performance at low temperatures. In a continuous feeding test, a high nitrogen conversion rate (6.2 kg N m⁻³ day⁻¹) was confirmed at 32 °C. Nitrogen removal activity decreased gradually with decreasing operation temperature; however, it still occurred at 6 °C. Nitrogen conversion rates at 22 and 6.3 °C were 2.8 and 0.36 kg N m⁻³ day⁻¹, respectively. Moreover, the stability of anammox activity below 20 °C was confirmed for more than 130 days. In batch experiments, anammox gel carriers were characterized with respect to temperature. The optimum temperature for anammox bacteria was found to be 37 °C. Furthermore, it was clear that the temperature dependence changed at about 28 °C. The apparent activation energy in the temperature range from 22 to 28 °C was calculated as 93 kJ mol⁻¹, and that in the range from 28 to 37 °C was 33 kJ mol⁻¹. This value agrees with the result of a continuous feeding test (94 kJ mol⁻¹, between 6 and 22 °C). The nitrogen removal performance demonstrated at the low temperatures used in this study will open the door for the application of anammox processes to many types of industrial wastewater treatment.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>18355289</pmid><doi>10.1111/j.1574-6968.2008.01095.x</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-1097
ispartof FEMS microbiology letters, 2008-05, Vol.282 (1), p.32-38
issn 0378-1097
1574-6968
language eng
recordid cdi_proquest_miscellaneous_14854943
source Oxford Journals Online
subjects Ammonia
Ammonia - metabolism
Ammonia-oxidizing bacteria
Ammonium
anaerobic
Anaerobic processes
Anaerobiosis
anammox
Bacteria
Bacteria - classification
Bacteria - genetics
Bacteria - metabolism
Biodegradation, Environmental
Biological and medical sciences
Bioreactors
Conversion
DNA, Bacterial - genetics
DNA, Ribosomal - genetics
Feeding
Fundamental and applied biological sciences. Psychology
gel entrapment
immobilization
Industrial wastes
Industrial wastewater
Industrial wastewater treatment
Low temperature
Microbiology
Nitrogen
Nitrogen removal
Oxidation
Oxidation-Reduction
Phylogeny
RNA, Ribosomal, 16S - genetics
Sewage - microbiology
Temperature
Temperature dependence
Temperature effects
Waste Disposal, Fluid
Wastewater treatment
Water treatment
title Nitrogen removal performance using anaerobic ammonium oxidation at low temperatures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A15%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen%20removal%20performance%20using%20anaerobic%20ammonium%20oxidation%20at%20low%20temperatures&rft.jtitle=FEMS%20microbiology%20letters&rft.au=Isaka,%20Kazuichi&rft.date=2008-05&rft.volume=282&rft.issue=1&rft.spage=32&rft.epage=38&rft.pages=32-38&rft.issn=0378-1097&rft.eissn=1574-6968&rft.coden=FMLED7&rft_id=info:doi/10.1111/j.1574-6968.2008.01095.x&rft_dat=%3Cproquest_cross%3E14854943%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6055-b3762bef102fe1a6d48331234c528b5b5e83190042aea9f822bd30de29c5ab3f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2306524320&rft_id=info:pmid/18355289&rft_oup_id=10.1111/j.1574-6968.2008.01095.x&rfr_iscdi=true