Loading…
Nitrogen removal performance using anaerobic ammonium oxidation at low temperatures
An anaerobic ammonium oxidation (anammox) process for ammonia-rich wastewater treatment has not been reported at temperatures below 15 °C. This study used a gel carrier with entrapped anammox bacteria to obtain a stable nitrogen removal performance at low temperatures. In a continuous feeding test,...
Saved in:
Published in: | FEMS microbiology letters 2008-05, Vol.282 (1), p.32-38 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6055-b3762bef102fe1a6d48331234c528b5b5e83190042aea9f822bd30de29c5ab3f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c6055-b3762bef102fe1a6d48331234c528b5b5e83190042aea9f822bd30de29c5ab3f3 |
container_end_page | 38 |
container_issue | 1 |
container_start_page | 32 |
container_title | FEMS microbiology letters |
container_volume | 282 |
creator | Isaka, Kazuichi Date, Yasuhiro Kimura, Yuya Sumino, Tatsuo Tsuneda, Satoshi |
description | An anaerobic ammonium oxidation (anammox) process for ammonia-rich wastewater treatment has not been reported at temperatures below 15 °C. This study used a gel carrier with entrapped anammox bacteria to obtain a stable nitrogen removal performance at low temperatures. In a continuous feeding test, a high nitrogen conversion rate (6.2 kg N m⁻³ day⁻¹) was confirmed at 32 °C. Nitrogen removal activity decreased gradually with decreasing operation temperature; however, it still occurred at 6 °C. Nitrogen conversion rates at 22 and 6.3 °C were 2.8 and 0.36 kg N m⁻³ day⁻¹, respectively. Moreover, the stability of anammox activity below 20 °C was confirmed for more than 130 days. In batch experiments, anammox gel carriers were characterized with respect to temperature. The optimum temperature for anammox bacteria was found to be 37 °C. Furthermore, it was clear that the temperature dependence changed at about 28 °C. The apparent activation energy in the temperature range from 22 to 28 °C was calculated as 93 kJ mol⁻¹, and that in the range from 28 to 37 °C was 33 kJ mol⁻¹. This value agrees with the result of a continuous feeding test (94 kJ mol⁻¹, between 6 and 22 °C). The nitrogen removal performance demonstrated at the low temperatures used in this study will open the door for the application of anammox processes to many types of industrial wastewater treatment. |
doi_str_mv | 10.1111/j.1574-6968.2008.01095.x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_14854943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1574-6968.2008.01095.x</oup_id><sourcerecordid>14854943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6055-b3762bef102fe1a6d48331234c528b5b5e83190042aea9f822bd30de29c5ab3f3</originalsourceid><addsrcrecordid>eNqNkMFu1DAQhi0EotvCK4AlBLcsYzvOOgcOqKIFaYFD6dmaJJOVV0m82Andvj0OWRUJgYQvtjTf7_n1McYFrEU6b_droTd5VpSFWUsAswYBpV4fH7HVw-AxW4HamCxNNmfsPMY9AOQSiqfsTBiltTTlit18cWPwOxp4oN7_wI4fKLQ-9DjUxKfohh3HASn4ytUc-94Pbuq5P7oGR-cHjiPv_B0fqU9BHKdA8Rl70mIX6fnpvmC3Vx--XX7Mtl-vP12-32Z1AVpnldoUsqJWgGxJYNHkRikhVV6napWuNBklyrkzEpatkbJqFDQky1pjpVp1wd4s_x6C_z5RHG3vYk1dhwP5KVqRG52XuUrgqz_AvZ_CkLpZqaDQMlcSEmUWqg4-xkCtPQTXY7i3Auys3e7tbNfOdu2s3f7Sbo8p-uK0YKp6an4HT54T8PoEYKyxa0PS6-IDJ0GWUog8ce8W7s51dP_fBezV5-38Snm15P10-Ec6-1v9l0uqRW9xF1Kz2xsJQiXIgDCgfgKTe7Xy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306524320</pqid></control><display><type>article</type><title>Nitrogen removal performance using anaerobic ammonium oxidation at low temperatures</title><source>Oxford Journals Online</source><creator>Isaka, Kazuichi ; Date, Yasuhiro ; Kimura, Yuya ; Sumino, Tatsuo ; Tsuneda, Satoshi</creator><creatorcontrib>Isaka, Kazuichi ; Date, Yasuhiro ; Kimura, Yuya ; Sumino, Tatsuo ; Tsuneda, Satoshi</creatorcontrib><description>An anaerobic ammonium oxidation (anammox) process for ammonia-rich wastewater treatment has not been reported at temperatures below 15 °C. This study used a gel carrier with entrapped anammox bacteria to obtain a stable nitrogen removal performance at low temperatures. In a continuous feeding test, a high nitrogen conversion rate (6.2 kg N m⁻³ day⁻¹) was confirmed at 32 °C. Nitrogen removal activity decreased gradually with decreasing operation temperature; however, it still occurred at 6 °C. Nitrogen conversion rates at 22 and 6.3 °C were 2.8 and 0.36 kg N m⁻³ day⁻¹, respectively. Moreover, the stability of anammox activity below 20 °C was confirmed for more than 130 days. In batch experiments, anammox gel carriers were characterized with respect to temperature. The optimum temperature for anammox bacteria was found to be 37 °C. Furthermore, it was clear that the temperature dependence changed at about 28 °C. The apparent activation energy in the temperature range from 22 to 28 °C was calculated as 93 kJ mol⁻¹, and that in the range from 28 to 37 °C was 33 kJ mol⁻¹. This value agrees with the result of a continuous feeding test (94 kJ mol⁻¹, between 6 and 22 °C). The nitrogen removal performance demonstrated at the low temperatures used in this study will open the door for the application of anammox processes to many types of industrial wastewater treatment.</description><identifier>ISSN: 0378-1097</identifier><identifier>EISSN: 1574-6968</identifier><identifier>DOI: 10.1111/j.1574-6968.2008.01095.x</identifier><identifier>PMID: 18355289</identifier><identifier>CODEN: FMLED7</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Ammonia ; Ammonia - metabolism ; Ammonia-oxidizing bacteria ; Ammonium ; anaerobic ; Anaerobic processes ; Anaerobiosis ; anammox ; Bacteria ; Bacteria - classification ; Bacteria - genetics ; Bacteria - metabolism ; Biodegradation, Environmental ; Biological and medical sciences ; Bioreactors ; Conversion ; DNA, Bacterial - genetics ; DNA, Ribosomal - genetics ; Feeding ; Fundamental and applied biological sciences. Psychology ; gel entrapment ; immobilization ; Industrial wastes ; Industrial wastewater ; Industrial wastewater treatment ; Low temperature ; Microbiology ; Nitrogen ; Nitrogen removal ; Oxidation ; Oxidation-Reduction ; Phylogeny ; RNA, Ribosomal, 16S - genetics ; Sewage - microbiology ; Temperature ; Temperature dependence ; Temperature effects ; Waste Disposal, Fluid ; Wastewater treatment ; Water treatment</subject><ispartof>FEMS microbiology letters, 2008-05, Vol.282 (1), p.32-38</ispartof><rights>2008 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved 2008</rights><rights>2008 Federation of European Microbiological Societies Published by Blackwell Publishing Ltd</rights><rights>2008 INIST-CNRS</rights><rights>2008 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6055-b3762bef102fe1a6d48331234c528b5b5e83190042aea9f822bd30de29c5ab3f3</citedby><cites>FETCH-LOGICAL-c6055-b3762bef102fe1a6d48331234c528b5b5e83190042aea9f822bd30de29c5ab3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20292114$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18355289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Isaka, Kazuichi</creatorcontrib><creatorcontrib>Date, Yasuhiro</creatorcontrib><creatorcontrib>Kimura, Yuya</creatorcontrib><creatorcontrib>Sumino, Tatsuo</creatorcontrib><creatorcontrib>Tsuneda, Satoshi</creatorcontrib><title>Nitrogen removal performance using anaerobic ammonium oxidation at low temperatures</title><title>FEMS microbiology letters</title><addtitle>FEMS Microbiol Lett</addtitle><description>An anaerobic ammonium oxidation (anammox) process for ammonia-rich wastewater treatment has not been reported at temperatures below 15 °C. This study used a gel carrier with entrapped anammox bacteria to obtain a stable nitrogen removal performance at low temperatures. In a continuous feeding test, a high nitrogen conversion rate (6.2 kg N m⁻³ day⁻¹) was confirmed at 32 °C. Nitrogen removal activity decreased gradually with decreasing operation temperature; however, it still occurred at 6 °C. Nitrogen conversion rates at 22 and 6.3 °C were 2.8 and 0.36 kg N m⁻³ day⁻¹, respectively. Moreover, the stability of anammox activity below 20 °C was confirmed for more than 130 days. In batch experiments, anammox gel carriers were characterized with respect to temperature. The optimum temperature for anammox bacteria was found to be 37 °C. Furthermore, it was clear that the temperature dependence changed at about 28 °C. The apparent activation energy in the temperature range from 22 to 28 °C was calculated as 93 kJ mol⁻¹, and that in the range from 28 to 37 °C was 33 kJ mol⁻¹. This value agrees with the result of a continuous feeding test (94 kJ mol⁻¹, between 6 and 22 °C). The nitrogen removal performance demonstrated at the low temperatures used in this study will open the door for the application of anammox processes to many types of industrial wastewater treatment.</description><subject>Ammonia</subject><subject>Ammonia - metabolism</subject><subject>Ammonia-oxidizing bacteria</subject><subject>Ammonium</subject><subject>anaerobic</subject><subject>Anaerobic processes</subject><subject>Anaerobiosis</subject><subject>anammox</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Biodegradation, Environmental</subject><subject>Biological and medical sciences</subject><subject>Bioreactors</subject><subject>Conversion</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Ribosomal - genetics</subject><subject>Feeding</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gel entrapment</subject><subject>immobilization</subject><subject>Industrial wastes</subject><subject>Industrial wastewater</subject><subject>Industrial wastewater treatment</subject><subject>Low temperature</subject><subject>Microbiology</subject><subject>Nitrogen</subject><subject>Nitrogen removal</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Phylogeny</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Sewage - microbiology</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Temperature effects</subject><subject>Waste Disposal, Fluid</subject><subject>Wastewater treatment</subject><subject>Water treatment</subject><issn>0378-1097</issn><issn>1574-6968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkMFu1DAQhi0EotvCK4AlBLcsYzvOOgcOqKIFaYFD6dmaJJOVV0m82Andvj0OWRUJgYQvtjTf7_n1McYFrEU6b_droTd5VpSFWUsAswYBpV4fH7HVw-AxW4HamCxNNmfsPMY9AOQSiqfsTBiltTTlit18cWPwOxp4oN7_wI4fKLQ-9DjUxKfohh3HASn4ytUc-94Pbuq5P7oGR-cHjiPv_B0fqU9BHKdA8Rl70mIX6fnpvmC3Vx--XX7Mtl-vP12-32Z1AVpnldoUsqJWgGxJYNHkRikhVV6napWuNBklyrkzEpatkbJqFDQky1pjpVp1wd4s_x6C_z5RHG3vYk1dhwP5KVqRG52XuUrgqz_AvZ_CkLpZqaDQMlcSEmUWqg4-xkCtPQTXY7i3Auys3e7tbNfOdu2s3f7Sbo8p-uK0YKp6an4HT54T8PoEYKyxa0PS6-IDJ0GWUog8ce8W7s51dP_fBezV5-38Snm15P10-Ec6-1v9l0uqRW9xF1Kz2xsJQiXIgDCgfgKTe7Xy</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Isaka, Kazuichi</creator><creator>Date, Yasuhiro</creator><creator>Kimura, Yuya</creator><creator>Sumino, Tatsuo</creator><creator>Tsuneda, Satoshi</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Oxford University Press</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>200805</creationdate><title>Nitrogen removal performance using anaerobic ammonium oxidation at low temperatures</title><author>Isaka, Kazuichi ; Date, Yasuhiro ; Kimura, Yuya ; Sumino, Tatsuo ; Tsuneda, Satoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6055-b3762bef102fe1a6d48331234c528b5b5e83190042aea9f822bd30de29c5ab3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Ammonia</topic><topic>Ammonia - metabolism</topic><topic>Ammonia-oxidizing bacteria</topic><topic>Ammonium</topic><topic>anaerobic</topic><topic>Anaerobic processes</topic><topic>Anaerobiosis</topic><topic>anammox</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Biodegradation, Environmental</topic><topic>Biological and medical sciences</topic><topic>Bioreactors</topic><topic>Conversion</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Ribosomal - genetics</topic><topic>Feeding</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gel entrapment</topic><topic>immobilization</topic><topic>Industrial wastes</topic><topic>Industrial wastewater</topic><topic>Industrial wastewater treatment</topic><topic>Low temperature</topic><topic>Microbiology</topic><topic>Nitrogen</topic><topic>Nitrogen removal</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Phylogeny</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Sewage - microbiology</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Temperature effects</topic><topic>Waste Disposal, Fluid</topic><topic>Wastewater treatment</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Isaka, Kazuichi</creatorcontrib><creatorcontrib>Date, Yasuhiro</creatorcontrib><creatorcontrib>Kimura, Yuya</creatorcontrib><creatorcontrib>Sumino, Tatsuo</creatorcontrib><creatorcontrib>Tsuneda, Satoshi</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>FEMS microbiology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Isaka, Kazuichi</au><au>Date, Yasuhiro</au><au>Kimura, Yuya</au><au>Sumino, Tatsuo</au><au>Tsuneda, Satoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen removal performance using anaerobic ammonium oxidation at low temperatures</atitle><jtitle>FEMS microbiology letters</jtitle><addtitle>FEMS Microbiol Lett</addtitle><date>2008-05</date><risdate>2008</risdate><volume>282</volume><issue>1</issue><spage>32</spage><epage>38</epage><pages>32-38</pages><issn>0378-1097</issn><eissn>1574-6968</eissn><coden>FMLED7</coden><abstract>An anaerobic ammonium oxidation (anammox) process for ammonia-rich wastewater treatment has not been reported at temperatures below 15 °C. This study used a gel carrier with entrapped anammox bacteria to obtain a stable nitrogen removal performance at low temperatures. In a continuous feeding test, a high nitrogen conversion rate (6.2 kg N m⁻³ day⁻¹) was confirmed at 32 °C. Nitrogen removal activity decreased gradually with decreasing operation temperature; however, it still occurred at 6 °C. Nitrogen conversion rates at 22 and 6.3 °C were 2.8 and 0.36 kg N m⁻³ day⁻¹, respectively. Moreover, the stability of anammox activity below 20 °C was confirmed for more than 130 days. In batch experiments, anammox gel carriers were characterized with respect to temperature. The optimum temperature for anammox bacteria was found to be 37 °C. Furthermore, it was clear that the temperature dependence changed at about 28 °C. The apparent activation energy in the temperature range from 22 to 28 °C was calculated as 93 kJ mol⁻¹, and that in the range from 28 to 37 °C was 33 kJ mol⁻¹. This value agrees with the result of a continuous feeding test (94 kJ mol⁻¹, between 6 and 22 °C). The nitrogen removal performance demonstrated at the low temperatures used in this study will open the door for the application of anammox processes to many types of industrial wastewater treatment.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>18355289</pmid><doi>10.1111/j.1574-6968.2008.01095.x</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-1097 |
ispartof | FEMS microbiology letters, 2008-05, Vol.282 (1), p.32-38 |
issn | 0378-1097 1574-6968 |
language | eng |
recordid | cdi_proquest_miscellaneous_14854943 |
source | Oxford Journals Online |
subjects | Ammonia Ammonia - metabolism Ammonia-oxidizing bacteria Ammonium anaerobic Anaerobic processes Anaerobiosis anammox Bacteria Bacteria - classification Bacteria - genetics Bacteria - metabolism Biodegradation, Environmental Biological and medical sciences Bioreactors Conversion DNA, Bacterial - genetics DNA, Ribosomal - genetics Feeding Fundamental and applied biological sciences. Psychology gel entrapment immobilization Industrial wastes Industrial wastewater Industrial wastewater treatment Low temperature Microbiology Nitrogen Nitrogen removal Oxidation Oxidation-Reduction Phylogeny RNA, Ribosomal, 16S - genetics Sewage - microbiology Temperature Temperature dependence Temperature effects Waste Disposal, Fluid Wastewater treatment Water treatment |
title | Nitrogen removal performance using anaerobic ammonium oxidation at low temperatures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A15%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen%20removal%20performance%20using%20anaerobic%20ammonium%20oxidation%20at%20low%20temperatures&rft.jtitle=FEMS%20microbiology%20letters&rft.au=Isaka,%20Kazuichi&rft.date=2008-05&rft.volume=282&rft.issue=1&rft.spage=32&rft.epage=38&rft.pages=32-38&rft.issn=0378-1097&rft.eissn=1574-6968&rft.coden=FMLED7&rft_id=info:doi/10.1111/j.1574-6968.2008.01095.x&rft_dat=%3Cproquest_cross%3E14854943%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6055-b3762bef102fe1a6d48331234c528b5b5e83190042aea9f822bd30de29c5ab3f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2306524320&rft_id=info:pmid/18355289&rft_oup_id=10.1111/j.1574-6968.2008.01095.x&rfr_iscdi=true |