Loading…

Superoxide dismutase-rich bacteria. Paradoxical increase in oxidant toxicity

Superoxide dismutase is considered important in protection of aerobes against oxidant damage, and increased tolerance to oxidant stress is associated with induction of this enzyme. However, the importance of superoxide dismutase in this tolerance is not clear because conditions which promote the syn...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1987-03, Vol.262 (8), p.3640-3645
Main Authors: Scott, M.D., Meshnick, S.R., Eaton, J.W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Superoxide dismutase is considered important in protection of aerobes against oxidant damage, and increased tolerance to oxidant stress is associated with induction of this enzyme. However, the importance of superoxide dismutase in this tolerance is not clear because conditions which promote the synthesis of superoxide dismutase likewise affect other antioxidant enzymes and substances. To clarify the role of superoxide dismutase per se in organismal defense against oxidant-generating drugs, we employed Escherichia coli transformed with multiple copies of the gene for bacterial iron superoxide dismutase. These bacteria have greater than ten times the superoxide dismutase activity of wild-type E. coli but, importantly, are normal in other oxidant defense parameters including catalase, peroxidases, glutathione, and glutathione reductase. High superoxide dismutase and control bacteria were exposed to the O2–generating drug paraquat and to elevated pO2. We find; high superoxide dismutase E. coli are more readily killed by paraquat under aerobic, but not anaerobic, conditions. During exposure to paraquat, high superoxide dismutase E. coli accumulate more H2O2. Coincidentally, the reduced glutathione content of high superoxide dismutase E. coli declines more than in control E. coli. E. coli with high superoxide dismutase activity are also more readily killed by hyperoxia. Interestingly, the susceptibility of the parental and high superoxide dismutase E. coli to killing by exogenous H2O2 is not significantly different. Thus, under these experimental conditions, greatly enhanced superoxide dismutase activity accelerates H2O2 formation. The increased H2O2 probably accounts for the exaggerated sensitivity of high superoxide dismutase bacteria to oxidant-generating drugs. These results support the concept that the product of superoxide dismutase, H2O2, is at least as hazardous as the substrate, O2-. We conclude that effective organismal defense against reactive oxygen species may require balanced increments in antioxidant enzymes and cannot necessarily be improved by increases in the activity of single enzymes.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)61401-2