Loading…

Numerical analysis of effect of shape-stabilized phase change material plates in a building combined with night ventilation

Effect of shape-stabilized phase change material (SSPCM) plates combined with night ventilation in summer is investigated numerically. A building in Beijing without active air-conditioning is considered for analysis, which includes SSPCM plates as inner linings of walls and the ceiling. Unsteady sim...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy 2009, Vol.86 (1), p.52-59
Main Authors: Zhou, Guobing, Yang, Yongping, Wang, Xin, Zhou, Shaoxiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Effect of shape-stabilized phase change material (SSPCM) plates combined with night ventilation in summer is investigated numerically. A building in Beijing without active air-conditioning is considered for analysis, which includes SSPCM plates as inner linings of walls and the ceiling. Unsteady simulation is performed using a verified enthalpy model, with time period covering the summer season. Effects of the following factors on room air temperature are investigated: the thermophysical properties of the SSPCM, the thickness of SSPCM plate and air change per hour (ACH) at both nighttime and daytime. The results show that the SSPCM plates could decrease the daily maximum temperature by up to 2 °C due to the cool storage at night. The appropriate values for melting temperature, heat of fusion, thermal conductivity and thickness of SSPCM plates need to be considered and calculated according to the climate conditions and building structure. The ACH at night needs to be as high as possible but the ACH at daytime should be controlled.
ISSN:0306-2619
1872-9118
DOI:10.1016/j.apenergy.2008.03.020