Loading…
Photoacoustic studies on the dependence of state transitions on grana stacking
Photoacoustic detection of oxygen evolution and Emerson enhancement in state 1 and state 2 were compared in a tobacco wild type and mutant (Su/su) deficient in chlorophyll. The mutant shows smaller changes in the distribution of excitation energy between the two photosystems than the wild type. Anal...
Saved in:
Published in: | Photosynthesis research 1990-09, Vol.25 (3), p.225-232 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Photoacoustic detection of oxygen evolution and Emerson enhancement in state 1 and state 2 were compared in a tobacco wild type and mutant (Su/su) deficient in chlorophyll. The mutant shows smaller changes in the distribution of excitation energy between the two photosystems than the wild type. Analysis of Emerson enhancement saturation curves indicates that in the mutant which is deficient in grana partitions and shows less stacking, state 1-state 2 transitions reflect changes in the yield of energy transfer from PS II to PS I (spillover). On the other hand, the wild type containing large grana shows changes in absorption cross-sections of the two photosystems upon state transitions. NaF, a specific phosphatase inhibitor, blocks the transition to state 1, indicating that LHC II phosphorylation has a role in excitation energy regulation in both the mutant as well as the wild type. It is demonstrated that N-ethylmaleimide, a specific sulfhydryl reagent, blocks the transition to state 2, suggesting that a disulfide-sulfhydryl redox couple activates the LHC II kinase in vivo. |
---|---|
ISSN: | 0166-8595 1573-5079 |
DOI: | 10.1007/BF00033163 |