Loading…

Tracking Suicide Risk Factors Through Twitter in the US

Background: Suicide is a leading cause of death in the United States. Social media such as Twitter is an emerging surveillance tool that may assist researchers in tracking suicide risk factors in real time. Aims: To identify suicide-related risk factors through Twitter conversations by matching on g...

Full description

Saved in:
Bibliographic Details
Published in:Crisis : the journal of crisis intervention and suicide prevention 2014, Vol.35 (1), p.51-59
Main Authors: Jashinsky, Jared, Burton, Scott H., Hanson, Carl L., West, Josh, Giraud-Carrier, Christophe, Barnes, Michael D., Argyle, Trenton
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Suicide is a leading cause of death in the United States. Social media such as Twitter is an emerging surveillance tool that may assist researchers in tracking suicide risk factors in real time. Aims: To identify suicide-related risk factors through Twitter conversations by matching on geographic suicide rates from vital statistics data. Method: At-risk tweets were filtered from the Twitter stream using keywords and phrases created from suicide risk factors. Tweets were grouped by state and departures from expectation were calculated. The values for suicide tweeters were compared against national data of actual suicide rates from the Centers for Disease Control and Prevention. Results: A total of 1,659,274 tweets were analyzed over a 3-month period with 37,717 identified as at-risk for suicide. Midwestern and western states had a higher proportion of suicide-related tweeters than expected, while the reverse was true for southern and eastern states. A strong correlation was observed between state Twitter-derived data and actual state age-adjusted suicide data. Conclusion: Twitter may be a viable tool for real-time monitoring of suicide risk factors on a large scale. This study demonstrates that individuals who are at risk for suicide may be detected through social media.
ISSN:0227-5910
2151-2396
DOI:10.1027/0227-5910/a000234