Loading…

Photosynthetic apparatus in chilling-sensitive plants. III. Contribution of loosely bound manganese to the mechanism of reversible inactivation of hill reaction activity following cold and dark storage and illumination of leaves

The levels of both tightly and loosely bound Mn in chloroplasts from fresh, cold and dark stored as well as illuminated leaves of Lycopersicon esculentum Mill. were studied in relation to Hill reaction activity. The tightly bound Mn pool represents one third of the total Mn content in chloroplasts i...

Full description

Saved in:
Bibliographic Details
Published in:Planta 1978, Vol.144 (1), p.49-56
Main Authors: Kaniuga, Z, Zabek, J, Sochanowicz, B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c300t-20a12ba9806018f55202c42013e2975b3fea94ec85e870df801326e6d639e9663
container_end_page 56
container_issue 1
container_start_page 49
container_title Planta
container_volume 144
creator Kaniuga, Z
Zabek, J
Sochanowicz, B
description The levels of both tightly and loosely bound Mn in chloroplasts from fresh, cold and dark stored as well as illuminated leaves of Lycopersicon esculentum Mill. were studied in relation to Hill reaction activity. The tightly bound Mn pool represents one third of the total Mn content in chloroplasts isolated from the fresh leaves, and its level does not change following cold storage and illumination of leaves. Upon cold and dark storage of leaves the loss from the chloroplasts of about 40%-50% of the total amount of Mn is accompanied by an almost complete inactivation of the Hill reactions, as studied with water as an electron donor, as well as by the appearance of an EPR signal characteristic of free Mn2+ ions. Following illumination of such leaves, the restoration of Hill reaction activity is accompanied by an increase in the total Mn content in chloroplasts of up to 70%-80% of the Mn level measured in the fresh leaves and by disappearance of the EPR signal. In contrast, aging in the cold of isolated chloroplasts does not affect their Mn content. The addition of manganese does not result in the restoration of Hill reaction activity in chloroplasts from cold stored leaves but causes a restoration of this activity inhibited by linolenic acid. The data suggest that the loosely bound Mn pool (extractable with Tris) can be differentiated into two fractions: (1) one functionally inactive in electron transport and (2) one responsible for restoration of Hill reaction activity. Mn of the latter fraction (about 45% of the total Mn content) probably originates from the free Mn ions present in the interior of the chloroplasts following the cold and dark storage of leaves and from Mn reincorporated into chloroplasts from the cytoplasm. Incorporation of Mn from both these sources into thylakoid membrane to form a functionally active, loosely bound Mn pool proceeds during the illumination of leaves and results in the restoration of Hill reaction activity inhibited following the storage of leaves in dark and cold.
doi_str_mv 10.1007/bf00385006
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1490702339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23373964</jstor_id><sourcerecordid>23373964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-20a12ba9806018f55202c42013e2975b3fea94ec85e870df801326e6d639e9663</originalsourceid><addsrcrecordid>eNpFkU9vEzEQxS0Eomngwh3wESFtmLX377FEFCJVAgl6Xs3uziYuXjvY3qB8Xz5IvU1TJEuW3vv5zXiGsTcprFKA8lM7AMgqByiesUWaSZEIyKrnbBFlkUAt8wt26f0dQDTL8iW7EFkGVZHJBfv3Y2eD9UcTdhRUx3G_R4dh8lwZ3u2U1spsE0_Gq6AOxPcaTfArvtlsVnxtTXCqnYKyhtuBa2s96SNv7WR6PqLZoiFPPFge4_lI3Q6N8uPMOjqQ86rVFCthF8PxHDNXjf4sRuHBU-HIB6u1_Rvb4Z3VPcdYokf3m_tgHW7pQYgvpzHmPXVEeCD_ir0YUHt6_Xgv2e31l1_rb8nN96-b9dVN0kmAEKeGqWixrqCAtBryXIDoMgGpJFGXeSsHwjqjrsqpKqEfquiIgoq-kDXVRSGX7MMpd-_sn4l8aEblO9JxZmQn36RZDSUIKeuIfjyhnbPeOxqavVMjumOTQjNvtfl8fd5qhN895k7tSP0Tel5jBN6egLt5GP99KUtZR2DJ3p_8AW2DW6d8c_tz_lg8VSqLXN4DA4i0uA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490702339</pqid></control><display><type>article</type><title>Photosynthetic apparatus in chilling-sensitive plants. III. Contribution of loosely bound manganese to the mechanism of reversible inactivation of hill reaction activity following cold and dark storage and illumination of leaves</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Springer Nature - Connect here FIRST to enable access</source><creator>Kaniuga, Z ; Zabek, J ; Sochanowicz, B</creator><creatorcontrib>Kaniuga, Z ; Zabek, J ; Sochanowicz, B</creatorcontrib><description>The levels of both tightly and loosely bound Mn in chloroplasts from fresh, cold and dark stored as well as illuminated leaves of Lycopersicon esculentum Mill. were studied in relation to Hill reaction activity. The tightly bound Mn pool represents one third of the total Mn content in chloroplasts isolated from the fresh leaves, and its level does not change following cold storage and illumination of leaves. Upon cold and dark storage of leaves the loss from the chloroplasts of about 40%-50% of the total amount of Mn is accompanied by an almost complete inactivation of the Hill reactions, as studied with water as an electron donor, as well as by the appearance of an EPR signal characteristic of free Mn2+ ions. Following illumination of such leaves, the restoration of Hill reaction activity is accompanied by an increase in the total Mn content in chloroplasts of up to 70%-80% of the Mn level measured in the fresh leaves and by disappearance of the EPR signal. In contrast, aging in the cold of isolated chloroplasts does not affect their Mn content. The addition of manganese does not result in the restoration of Hill reaction activity in chloroplasts from cold stored leaves but causes a restoration of this activity inhibited by linolenic acid. The data suggest that the loosely bound Mn pool (extractable with Tris) can be differentiated into two fractions: (1) one functionally inactive in electron transport and (2) one responsible for restoration of Hill reaction activity. Mn of the latter fraction (about 45% of the total Mn content) probably originates from the free Mn ions present in the interior of the chloroplasts following the cold and dark storage of leaves and from Mn reincorporated into chloroplasts from the cytoplasm. Incorporation of Mn from both these sources into thylakoid membrane to form a functionally active, loosely bound Mn pool proceeds during the illumination of leaves and results in the restoration of Hill reaction activity inhibited following the storage of leaves in dark and cold.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/bf00385006</identifier><identifier>PMID: 24408643</identifier><language>eng</language><publisher>Germany: Springer-Verlag</publisher><subject>Atoms ; Chlorophylls ; Chloroplasts ; Cold storage ; Leaves ; Manganese ; Oxygen ; Plants ; Spinach ; tomatoes ; Viologens</subject><ispartof>Planta, 1978, Vol.144 (1), p.49-56</ispartof><rights>Springer-Verlag Berlin Heidelberg 1979</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c300t-20a12ba9806018f55202c42013e2975b3fea94ec85e870df801326e6d639e9663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23373964$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23373964$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24408643$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaniuga, Z</creatorcontrib><creatorcontrib>Zabek, J</creatorcontrib><creatorcontrib>Sochanowicz, B</creatorcontrib><title>Photosynthetic apparatus in chilling-sensitive plants. III. Contribution of loosely bound manganese to the mechanism of reversible inactivation of hill reaction activity following cold and dark storage and illumination of leaves</title><title>Planta</title><addtitle>Planta</addtitle><description>The levels of both tightly and loosely bound Mn in chloroplasts from fresh, cold and dark stored as well as illuminated leaves of Lycopersicon esculentum Mill. were studied in relation to Hill reaction activity. The tightly bound Mn pool represents one third of the total Mn content in chloroplasts isolated from the fresh leaves, and its level does not change following cold storage and illumination of leaves. Upon cold and dark storage of leaves the loss from the chloroplasts of about 40%-50% of the total amount of Mn is accompanied by an almost complete inactivation of the Hill reactions, as studied with water as an electron donor, as well as by the appearance of an EPR signal characteristic of free Mn2+ ions. Following illumination of such leaves, the restoration of Hill reaction activity is accompanied by an increase in the total Mn content in chloroplasts of up to 70%-80% of the Mn level measured in the fresh leaves and by disappearance of the EPR signal. In contrast, aging in the cold of isolated chloroplasts does not affect their Mn content. The addition of manganese does not result in the restoration of Hill reaction activity in chloroplasts from cold stored leaves but causes a restoration of this activity inhibited by linolenic acid. The data suggest that the loosely bound Mn pool (extractable with Tris) can be differentiated into two fractions: (1) one functionally inactive in electron transport and (2) one responsible for restoration of Hill reaction activity. Mn of the latter fraction (about 45% of the total Mn content) probably originates from the free Mn ions present in the interior of the chloroplasts following the cold and dark storage of leaves and from Mn reincorporated into chloroplasts from the cytoplasm. Incorporation of Mn from both these sources into thylakoid membrane to form a functionally active, loosely bound Mn pool proceeds during the illumination of leaves and results in the restoration of Hill reaction activity inhibited following the storage of leaves in dark and cold.</description><subject>Atoms</subject><subject>Chlorophylls</subject><subject>Chloroplasts</subject><subject>Cold storage</subject><subject>Leaves</subject><subject>Manganese</subject><subject>Oxygen</subject><subject>Plants</subject><subject>Spinach</subject><subject>tomatoes</subject><subject>Viologens</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1978</creationdate><recordtype>article</recordtype><recordid>eNpFkU9vEzEQxS0Eomngwh3wESFtmLX377FEFCJVAgl6Xs3uziYuXjvY3qB8Xz5IvU1TJEuW3vv5zXiGsTcprFKA8lM7AMgqByiesUWaSZEIyKrnbBFlkUAt8wt26f0dQDTL8iW7EFkGVZHJBfv3Y2eD9UcTdhRUx3G_R4dh8lwZ3u2U1spsE0_Gq6AOxPcaTfArvtlsVnxtTXCqnYKyhtuBa2s96SNv7WR6PqLZoiFPPFge4_lI3Q6N8uPMOjqQ86rVFCthF8PxHDNXjf4sRuHBU-HIB6u1_Rvb4Z3VPcdYokf3m_tgHW7pQYgvpzHmPXVEeCD_ir0YUHt6_Xgv2e31l1_rb8nN96-b9dVN0kmAEKeGqWixrqCAtBryXIDoMgGpJFGXeSsHwjqjrsqpKqEfquiIgoq-kDXVRSGX7MMpd-_sn4l8aEblO9JxZmQn36RZDSUIKeuIfjyhnbPeOxqavVMjumOTQjNvtfl8fd5qhN895k7tSP0Tel5jBN6egLt5GP99KUtZR2DJ3p_8AW2DW6d8c_tz_lg8VSqLXN4DA4i0uA</recordid><startdate>1978</startdate><enddate>1978</enddate><creator>Kaniuga, Z</creator><creator>Zabek, J</creator><creator>Sochanowicz, B</creator><general>Springer-Verlag</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>1978</creationdate><title>Photosynthetic apparatus in chilling-sensitive plants. III. Contribution of loosely bound manganese to the mechanism of reversible inactivation of hill reaction activity following cold and dark storage and illumination of leaves</title><author>Kaniuga, Z ; Zabek, J ; Sochanowicz, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-20a12ba9806018f55202c42013e2975b3fea94ec85e870df801326e6d639e9663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1978</creationdate><topic>Atoms</topic><topic>Chlorophylls</topic><topic>Chloroplasts</topic><topic>Cold storage</topic><topic>Leaves</topic><topic>Manganese</topic><topic>Oxygen</topic><topic>Plants</topic><topic>Spinach</topic><topic>tomatoes</topic><topic>Viologens</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaniuga, Z</creatorcontrib><creatorcontrib>Zabek, J</creatorcontrib><creatorcontrib>Sochanowicz, B</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaniuga, Z</au><au>Zabek, J</au><au>Sochanowicz, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photosynthetic apparatus in chilling-sensitive plants. III. Contribution of loosely bound manganese to the mechanism of reversible inactivation of hill reaction activity following cold and dark storage and illumination of leaves</atitle><jtitle>Planta</jtitle><addtitle>Planta</addtitle><date>1978</date><risdate>1978</risdate><volume>144</volume><issue>1</issue><spage>49</spage><epage>56</epage><pages>49-56</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><abstract>The levels of both tightly and loosely bound Mn in chloroplasts from fresh, cold and dark stored as well as illuminated leaves of Lycopersicon esculentum Mill. were studied in relation to Hill reaction activity. The tightly bound Mn pool represents one third of the total Mn content in chloroplasts isolated from the fresh leaves, and its level does not change following cold storage and illumination of leaves. Upon cold and dark storage of leaves the loss from the chloroplasts of about 40%-50% of the total amount of Mn is accompanied by an almost complete inactivation of the Hill reactions, as studied with water as an electron donor, as well as by the appearance of an EPR signal characteristic of free Mn2+ ions. Following illumination of such leaves, the restoration of Hill reaction activity is accompanied by an increase in the total Mn content in chloroplasts of up to 70%-80% of the Mn level measured in the fresh leaves and by disappearance of the EPR signal. In contrast, aging in the cold of isolated chloroplasts does not affect their Mn content. The addition of manganese does not result in the restoration of Hill reaction activity in chloroplasts from cold stored leaves but causes a restoration of this activity inhibited by linolenic acid. The data suggest that the loosely bound Mn pool (extractable with Tris) can be differentiated into two fractions: (1) one functionally inactive in electron transport and (2) one responsible for restoration of Hill reaction activity. Mn of the latter fraction (about 45% of the total Mn content) probably originates from the free Mn ions present in the interior of the chloroplasts following the cold and dark storage of leaves and from Mn reincorporated into chloroplasts from the cytoplasm. Incorporation of Mn from both these sources into thylakoid membrane to form a functionally active, loosely bound Mn pool proceeds during the illumination of leaves and results in the restoration of Hill reaction activity inhibited following the storage of leaves in dark and cold.</abstract><cop>Germany</cop><pub>Springer-Verlag</pub><pmid>24408643</pmid><doi>10.1007/bf00385006</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 1978, Vol.144 (1), p.49-56
issn 0032-0935
1432-2048
language eng
recordid cdi_proquest_miscellaneous_1490702339
source JSTOR Archival Journals and Primary Sources Collection; Springer Nature - Connect here FIRST to enable access
subjects Atoms
Chlorophylls
Chloroplasts
Cold storage
Leaves
Manganese
Oxygen
Plants
Spinach
tomatoes
Viologens
title Photosynthetic apparatus in chilling-sensitive plants. III. Contribution of loosely bound manganese to the mechanism of reversible inactivation of hill reaction activity following cold and dark storage and illumination of leaves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A18%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photosynthetic%20apparatus%20in%20chilling-sensitive%20plants.%20III.%20Contribution%20of%20loosely%20bound%20manganese%20to%20the%20mechanism%20of%20reversible%20inactivation%20of%20hill%20reaction%20activity%20following%20cold%20and%20dark%20storage%20and%20illumination%20of%20leaves&rft.jtitle=Planta&rft.au=Kaniuga,%20Z&rft.date=1978&rft.volume=144&rft.issue=1&rft.spage=49&rft.epage=56&rft.pages=49-56&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/bf00385006&rft_dat=%3Cjstor_proqu%3E23373964%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-20a12ba9806018f55202c42013e2975b3fea94ec85e870df801326e6d639e9663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1490702339&rft_id=info:pmid/24408643&rft_jstor_id=23373964&rfr_iscdi=true