Loading…

Increased endocytosis of fluorescent phospholipid in tobacco pollen in microgravity and inhibition by verapamil

Gravity sensing in plants occurs in specialised tissues, like in the columella in root tips or the endodermis in shoots. Generally, dense organelles, acting as statoliths, are thought to interact with the cytosekeleton and ion channels in gravitropism. We examined the possibility that tobacco pollen...

Full description

Saved in:
Bibliographic Details
Published in:Plant biology (Stuttgart, Germany) Germany), 2014-01, Vol.16 (s1), p.107-112
Main Authors: Scherer, G. F. E., Quader, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Gravity sensing in plants occurs in specialised tissues, like in the columella in root tips or the endodermis in shoots. Generally, dense organelles, acting as statoliths, are thought to interact with the cytosekeleton and ion channels in gravitropism. We examined the possibility that tobacco pollen tubes (Nicotiana sylvestris) having an elaborate cytoskeleton could perceive gravity through interaction of the cytoskeleton and the endomembrane system and organelles. Using lipid endocytosis as a quantitative parameter, we show that endocytosis is increased transiently in microgravity within 3 min. This increase is inhibited by the calcium blocker verapamil, suggesting that calcium is lowered in the tip, which is known to increase endocytosis in the pollen tube.
ISSN:1435-8603
1438-8677
DOI:10.1111/plb.12061