Loading…

Enhanced Electron Transport in Nb-Doped TiO2 Nanoparticles via Pressure-Induced Phase Transitions

Anatase TiO2 is one of the most important energy materials but suffers from poor electrical conductivity. Nb doping has been considered as an effective way to improve its performance in the applications of photocatalysis, solar cells, Li batteries, and transparent conducting oxide films. Here, we re...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2014-01, Vol.136 (1), p.419-426
Main Authors: Lü, Xujie, Yang, Wenge, Quan, Zewei, Lin, Tianquan, Bai, Ligang, Wang, Lin, Huang, Fuqiang, Zhao, Yusheng
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 426
container_issue 1
container_start_page 419
container_title Journal of the American Chemical Society
container_volume 136
creator Lü, Xujie
Yang, Wenge
Quan, Zewei
Lin, Tianquan
Bai, Ligang
Wang, Lin
Huang, Fuqiang
Zhao, Yusheng
description Anatase TiO2 is one of the most important energy materials but suffers from poor electrical conductivity. Nb doping has been considered as an effective way to improve its performance in the applications of photocatalysis, solar cells, Li batteries, and transparent conducting oxide films. Here, we report the further enhancement of electron transport in Nb-doped TiO2 nanoparticles via pressure-induced phase transitions. The phase transition behavior and influence of Nb doping in anatase Nb-TiO2 have been systematically investigated by in situ synchrotron X-ray diffraction and Raman spectroscopy. The bulk moduli are determined to be 179.5, 163.3, 148.3, and 139.0 GPa for 0, 2.5, 5.0, and 10.0 mol % Nb-doped TiO2, respectively. The Nb-concentration-dependent stiffness variation has been demonstrated: samples with higher Nb concentrations have lower stiffness. In situ resistance measurements reveal an increase of 40% in conductivity of quenched Nb-TiO2 in comparison to the pristine anatase phase. The pressure-induced conductivity evolution is discussed in detail in terms of the packing factor model, which provides direct evidence for the rationality of the correlation of packing factors with electron transport in semiconductors. Pressure-treated Nb-doped TiO2 with unique properties surpassing those in the anatase phase holds great promise for energy-related applications.
doi_str_mv 10.1021/ja410810w
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1490726628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1490726628</sourcerecordid><originalsourceid>FETCH-LOGICAL-a334t-ec172bb7916c5d6538812c4580a08e64afe582b6c16882ea8b33051546d1391c3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQQIMotlYP_gHZi-BlNZOvTY9SqxZK20M9h2w2pSnbZE12Ff-9W1o9DcM8HsND6BbwI2ACTzvNAEvA32doCJzgnAMR52iIMSZ5IQUdoKuUdv3KiIRLNCCMElxgOUR66rfaG1tl09qaNgafraP2qQmxzZzPFmX-Epr-vHZLki20D42OrTO1TdmX09kq2pS6aPOZr7qDZrXVyR4drnXBp2t0sdF1sjenOUIfr9P15D2fL99mk-d5rillbW4NFKQsizEIwyvBqZRADOMSayytYHpjuSSlMCCkJFbLklLMgTNRAR2DoSP0cPQ2MXx2NrVq75Kxda29DV1SwMa4IEIQ2aN3J7Qr97ZSTXR7HX_UX5YeuD8C2iS1C130_ecKsDrkVv-56S9h7G4S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490726628</pqid></control><display><type>article</type><title>Enhanced Electron Transport in Nb-Doped TiO2 Nanoparticles via Pressure-Induced Phase Transitions</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Lü, Xujie ; Yang, Wenge ; Quan, Zewei ; Lin, Tianquan ; Bai, Ligang ; Wang, Lin ; Huang, Fuqiang ; Zhao, Yusheng</creator><creatorcontrib>Lü, Xujie ; Yang, Wenge ; Quan, Zewei ; Lin, Tianquan ; Bai, Ligang ; Wang, Lin ; Huang, Fuqiang ; Zhao, Yusheng</creatorcontrib><description>Anatase TiO2 is one of the most important energy materials but suffers from poor electrical conductivity. Nb doping has been considered as an effective way to improve its performance in the applications of photocatalysis, solar cells, Li batteries, and transparent conducting oxide films. Here, we report the further enhancement of electron transport in Nb-doped TiO2 nanoparticles via pressure-induced phase transitions. The phase transition behavior and influence of Nb doping in anatase Nb-TiO2 have been systematically investigated by in situ synchrotron X-ray diffraction and Raman spectroscopy. The bulk moduli are determined to be 179.5, 163.3, 148.3, and 139.0 GPa for 0, 2.5, 5.0, and 10.0 mol % Nb-doped TiO2, respectively. The Nb-concentration-dependent stiffness variation has been demonstrated: samples with higher Nb concentrations have lower stiffness. In situ resistance measurements reveal an increase of 40% in conductivity of quenched Nb-TiO2 in comparison to the pristine anatase phase. The pressure-induced conductivity evolution is discussed in detail in terms of the packing factor model, which provides direct evidence for the rationality of the correlation of packing factors with electron transport in semiconductors. Pressure-treated Nb-doped TiO2 with unique properties surpassing those in the anatase phase holds great promise for energy-related applications.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja410810w</identifier><identifier>PMID: 24320708</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2014-01, Vol.136 (1), p.419-426</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24320708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lü, Xujie</creatorcontrib><creatorcontrib>Yang, Wenge</creatorcontrib><creatorcontrib>Quan, Zewei</creatorcontrib><creatorcontrib>Lin, Tianquan</creatorcontrib><creatorcontrib>Bai, Ligang</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Huang, Fuqiang</creatorcontrib><creatorcontrib>Zhao, Yusheng</creatorcontrib><title>Enhanced Electron Transport in Nb-Doped TiO2 Nanoparticles via Pressure-Induced Phase Transitions</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Anatase TiO2 is one of the most important energy materials but suffers from poor electrical conductivity. Nb doping has been considered as an effective way to improve its performance in the applications of photocatalysis, solar cells, Li batteries, and transparent conducting oxide films. Here, we report the further enhancement of electron transport in Nb-doped TiO2 nanoparticles via pressure-induced phase transitions. The phase transition behavior and influence of Nb doping in anatase Nb-TiO2 have been systematically investigated by in situ synchrotron X-ray diffraction and Raman spectroscopy. The bulk moduli are determined to be 179.5, 163.3, 148.3, and 139.0 GPa for 0, 2.5, 5.0, and 10.0 mol % Nb-doped TiO2, respectively. The Nb-concentration-dependent stiffness variation has been demonstrated: samples with higher Nb concentrations have lower stiffness. In situ resistance measurements reveal an increase of 40% in conductivity of quenched Nb-TiO2 in comparison to the pristine anatase phase. The pressure-induced conductivity evolution is discussed in detail in terms of the packing factor model, which provides direct evidence for the rationality of the correlation of packing factors with electron transport in semiconductors. Pressure-treated Nb-doped TiO2 with unique properties surpassing those in the anatase phase holds great promise for energy-related applications.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQQIMotlYP_gHZi-BlNZOvTY9SqxZK20M9h2w2pSnbZE12Ff-9W1o9DcM8HsND6BbwI2ACTzvNAEvA32doCJzgnAMR52iIMSZ5IQUdoKuUdv3KiIRLNCCMElxgOUR66rfaG1tl09qaNgafraP2qQmxzZzPFmX-Epr-vHZLki20D42OrTO1TdmX09kq2pS6aPOZr7qDZrXVyR4drnXBp2t0sdF1sjenOUIfr9P15D2fL99mk-d5rillbW4NFKQsizEIwyvBqZRADOMSayytYHpjuSSlMCCkJFbLklLMgTNRAR2DoSP0cPQ2MXx2NrVq75Kxda29DV1SwMa4IEIQ2aN3J7Qr97ZSTXR7HX_UX5YeuD8C2iS1C130_ecKsDrkVv-56S9h7G4S</recordid><startdate>20140108</startdate><enddate>20140108</enddate><creator>Lü, Xujie</creator><creator>Yang, Wenge</creator><creator>Quan, Zewei</creator><creator>Lin, Tianquan</creator><creator>Bai, Ligang</creator><creator>Wang, Lin</creator><creator>Huang, Fuqiang</creator><creator>Zhao, Yusheng</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20140108</creationdate><title>Enhanced Electron Transport in Nb-Doped TiO2 Nanoparticles via Pressure-Induced Phase Transitions</title><author>Lü, Xujie ; Yang, Wenge ; Quan, Zewei ; Lin, Tianquan ; Bai, Ligang ; Wang, Lin ; Huang, Fuqiang ; Zhao, Yusheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a334t-ec172bb7916c5d6538812c4580a08e64afe582b6c16882ea8b33051546d1391c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lü, Xujie</creatorcontrib><creatorcontrib>Yang, Wenge</creatorcontrib><creatorcontrib>Quan, Zewei</creatorcontrib><creatorcontrib>Lin, Tianquan</creatorcontrib><creatorcontrib>Bai, Ligang</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Huang, Fuqiang</creatorcontrib><creatorcontrib>Zhao, Yusheng</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lü, Xujie</au><au>Yang, Wenge</au><au>Quan, Zewei</au><au>Lin, Tianquan</au><au>Bai, Ligang</au><au>Wang, Lin</au><au>Huang, Fuqiang</au><au>Zhao, Yusheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Electron Transport in Nb-Doped TiO2 Nanoparticles via Pressure-Induced Phase Transitions</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2014-01-08</date><risdate>2014</risdate><volume>136</volume><issue>1</issue><spage>419</spage><epage>426</epage><pages>419-426</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Anatase TiO2 is one of the most important energy materials but suffers from poor electrical conductivity. Nb doping has been considered as an effective way to improve its performance in the applications of photocatalysis, solar cells, Li batteries, and transparent conducting oxide films. Here, we report the further enhancement of electron transport in Nb-doped TiO2 nanoparticles via pressure-induced phase transitions. The phase transition behavior and influence of Nb doping in anatase Nb-TiO2 have been systematically investigated by in situ synchrotron X-ray diffraction and Raman spectroscopy. The bulk moduli are determined to be 179.5, 163.3, 148.3, and 139.0 GPa for 0, 2.5, 5.0, and 10.0 mol % Nb-doped TiO2, respectively. The Nb-concentration-dependent stiffness variation has been demonstrated: samples with higher Nb concentrations have lower stiffness. In situ resistance measurements reveal an increase of 40% in conductivity of quenched Nb-TiO2 in comparison to the pristine anatase phase. The pressure-induced conductivity evolution is discussed in detail in terms of the packing factor model, which provides direct evidence for the rationality of the correlation of packing factors with electron transport in semiconductors. Pressure-treated Nb-doped TiO2 with unique properties surpassing those in the anatase phase holds great promise for energy-related applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24320708</pmid><doi>10.1021/ja410810w</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2014-01, Vol.136 (1), p.419-426
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1490726628
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Enhanced Electron Transport in Nb-Doped TiO2 Nanoparticles via Pressure-Induced Phase Transitions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A17%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Electron%20Transport%20in%20Nb-Doped%20TiO2%20Nanoparticles%20via%20Pressure-Induced%20Phase%20Transitions&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Lu%CC%88,%20Xujie&rft.date=2014-01-08&rft.volume=136&rft.issue=1&rft.spage=419&rft.epage=426&rft.pages=419-426&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja410810w&rft_dat=%3Cproquest_pubme%3E1490726628%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a334t-ec172bb7916c5d6538812c4580a08e64afe582b6c16882ea8b33051546d1391c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1490726628&rft_id=info:pmid/24320708&rfr_iscdi=true