Loading…

Neurotransmitter Detection Using Corona Phase Molecular Recognition on Fluorescent Single-Walled Carbon Nanotube Sensors

Temporal and spatial changes in neurotransmitter concentrations are central to information processing in neural networks. Therefore, biosensors for neurotransmitters are essential tools for neuroscience. In this work, we applied a new technique, corona phase molecular recognition (CoPhMoRe), to iden...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2014-01, Vol.136 (2), p.713-724
Main Authors: Kruss, Sebastian, Landry, Markita P, Vander Ende, Emma, Lima, Barbara M.A, Reuel, Nigel F, Zhang, Jingqing, Nelson, Justin, Mu, Bin, Hilmer, Andrew, Strano, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a416t-5ad4acb47ac7f2ef1ffdbdcafd8f8a581de4176af22a8870ad9db7a9969133e73
cites cdi_FETCH-LOGICAL-a416t-5ad4acb47ac7f2ef1ffdbdcafd8f8a581de4176af22a8870ad9db7a9969133e73
container_end_page 724
container_issue 2
container_start_page 713
container_title Journal of the American Chemical Society
container_volume 136
creator Kruss, Sebastian
Landry, Markita P
Vander Ende, Emma
Lima, Barbara M.A
Reuel, Nigel F
Zhang, Jingqing
Nelson, Justin
Mu, Bin
Hilmer, Andrew
Strano, Michael
description Temporal and spatial changes in neurotransmitter concentrations are central to information processing in neural networks. Therefore, biosensors for neurotransmitters are essential tools for neuroscience. In this work, we applied a new technique, corona phase molecular recognition (CoPhMoRe), to identify adsorbed polymer phases on fluorescent single-walled carbon nanotubes (SWCNTs) that allow for the selective detection of specific neurotransmitters, including dopamine. We functionalized and suspended SWCNTs with a library of different polymers (n = 30) containing phospholipids, nucleic acids, and amphiphilic polymers to study how neurotransmitters modulate the resulting band gap, near-infrared (nIR) fluorescence of the SWCNT. We identified several corona phases that enable the selective detection of neurotransmitters. Catecholamines such as dopamine increased the fluorescence of specific single-stranded DNA- and RNA-wrapped SWCNTs by 58–80% upon addition of 100 μM dopamine depending on the SWCNT chirality (n,m). In solution, the limit of detection was 11 nM [K d = 433 nM for (GT)15 DNA-wrapped SWCNTs]. Mechanistic studies revealed that this turn-on response is due to an increase in fluorescence quantum yield and not covalent modification of the SWCNT or scavenging of reactive oxygen species. When immobilized on a surface, the fluorescence intensity of a single DNA- or RNA-wrapped SWCNT is enhanced by a factor of up to 5.39 ± 1.44, whereby fluorescence signals are reversible. Our findings indicate that certain DNA/RNA coronae act as conformational switches on SWCNTs, which reversibly modulate the SWCNT fluorescence. These findings suggest that our polymer–SWCNT constructs can act as fluorescent neurotransmitter sensors in the tissue-compatible nIR optical window, which may find applications in neuroscience.
doi_str_mv 10.1021/ja410433b
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1490774722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1490774722</sourcerecordid><originalsourceid>FETCH-LOGICAL-a416t-5ad4acb47ac7f2ef1ffdbdcafd8f8a581de4176af22a8870ad9db7a9969133e73</originalsourceid><addsrcrecordid>eNpt0E1LHTEUBuBQlHq1LvoHJJtCXYwmmcxkZlluqy34UarS5XAmOdG55CaaZMD-e1OvuhICIfCcl5yXkM-cHXEm-PEKJGeyrscPZMEbwaqGi3aLLBhjolJdW--Q3ZRW5SlFxz-SHSHrRsq6XZDHC5xjyBF8Wk85Y6TfMaPOU_D0Jk3-li5DDB7o7ztISM-DQz07iPQP6nDrp2dYzombQ8Sk0Wd6VcYcVn_BOTR0CXEs4AJ8yPOI9Ap9CjF9ItsWXML9l3uP3Jz8uF7-rM4uT38tv51VZac2Vw0YCXqUCrSyAi231oxGgzWd7aDpuEHJVQtWCOg6xcD0ZlTQ923P6xpVvUe-bnLvY3iYMeVhPZVvOgcew5wGLnumlFRCFHq4oTqGlCLa4T5Oa4j_Bs6G_0UPb0UXe_ASO49rNG_ytdkCvmwA6DSswhx92fKdoCeneod_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490774722</pqid></control><display><type>article</type><title>Neurotransmitter Detection Using Corona Phase Molecular Recognition on Fluorescent Single-Walled Carbon Nanotube Sensors</title><source>Access via American Chemical Society</source><creator>Kruss, Sebastian ; Landry, Markita P ; Vander Ende, Emma ; Lima, Barbara M.A ; Reuel, Nigel F ; Zhang, Jingqing ; Nelson, Justin ; Mu, Bin ; Hilmer, Andrew ; Strano, Michael</creator><creatorcontrib>Kruss, Sebastian ; Landry, Markita P ; Vander Ende, Emma ; Lima, Barbara M.A ; Reuel, Nigel F ; Zhang, Jingqing ; Nelson, Justin ; Mu, Bin ; Hilmer, Andrew ; Strano, Michael</creatorcontrib><description>Temporal and spatial changes in neurotransmitter concentrations are central to information processing in neural networks. Therefore, biosensors for neurotransmitters are essential tools for neuroscience. In this work, we applied a new technique, corona phase molecular recognition (CoPhMoRe), to identify adsorbed polymer phases on fluorescent single-walled carbon nanotubes (SWCNTs) that allow for the selective detection of specific neurotransmitters, including dopamine. We functionalized and suspended SWCNTs with a library of different polymers (n = 30) containing phospholipids, nucleic acids, and amphiphilic polymers to study how neurotransmitters modulate the resulting band gap, near-infrared (nIR) fluorescence of the SWCNT. We identified several corona phases that enable the selective detection of neurotransmitters. Catecholamines such as dopamine increased the fluorescence of specific single-stranded DNA- and RNA-wrapped SWCNTs by 58–80% upon addition of 100 μM dopamine depending on the SWCNT chirality (n,m). In solution, the limit of detection was 11 nM [K d = 433 nM for (GT)15 DNA-wrapped SWCNTs]. Mechanistic studies revealed that this turn-on response is due to an increase in fluorescence quantum yield and not covalent modification of the SWCNT or scavenging of reactive oxygen species. When immobilized on a surface, the fluorescence intensity of a single DNA- or RNA-wrapped SWCNT is enhanced by a factor of up to 5.39 ± 1.44, whereby fluorescence signals are reversible. Our findings indicate that certain DNA/RNA coronae act as conformational switches on SWCNTs, which reversibly modulate the SWCNT fluorescence. These findings suggest that our polymer–SWCNT constructs can act as fluorescent neurotransmitter sensors in the tissue-compatible nIR optical window, which may find applications in neuroscience.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja410433b</identifier><identifier>PMID: 24354436</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adsorption ; Fluorescent Dyes - chemistry ; Microscopy, Fluorescence - methods ; Molecular Structure ; Nanotubes, Carbon - chemistry ; Neurotransmitter Agents - analysis</subject><ispartof>Journal of the American Chemical Society, 2014-01, Vol.136 (2), p.713-724</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a416t-5ad4acb47ac7f2ef1ffdbdcafd8f8a581de4176af22a8870ad9db7a9969133e73</citedby><cites>FETCH-LOGICAL-a416t-5ad4acb47ac7f2ef1ffdbdcafd8f8a581de4176af22a8870ad9db7a9969133e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24354436$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kruss, Sebastian</creatorcontrib><creatorcontrib>Landry, Markita P</creatorcontrib><creatorcontrib>Vander Ende, Emma</creatorcontrib><creatorcontrib>Lima, Barbara M.A</creatorcontrib><creatorcontrib>Reuel, Nigel F</creatorcontrib><creatorcontrib>Zhang, Jingqing</creatorcontrib><creatorcontrib>Nelson, Justin</creatorcontrib><creatorcontrib>Mu, Bin</creatorcontrib><creatorcontrib>Hilmer, Andrew</creatorcontrib><creatorcontrib>Strano, Michael</creatorcontrib><title>Neurotransmitter Detection Using Corona Phase Molecular Recognition on Fluorescent Single-Walled Carbon Nanotube Sensors</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Temporal and spatial changes in neurotransmitter concentrations are central to information processing in neural networks. Therefore, biosensors for neurotransmitters are essential tools for neuroscience. In this work, we applied a new technique, corona phase molecular recognition (CoPhMoRe), to identify adsorbed polymer phases on fluorescent single-walled carbon nanotubes (SWCNTs) that allow for the selective detection of specific neurotransmitters, including dopamine. We functionalized and suspended SWCNTs with a library of different polymers (n = 30) containing phospholipids, nucleic acids, and amphiphilic polymers to study how neurotransmitters modulate the resulting band gap, near-infrared (nIR) fluorescence of the SWCNT. We identified several corona phases that enable the selective detection of neurotransmitters. Catecholamines such as dopamine increased the fluorescence of specific single-stranded DNA- and RNA-wrapped SWCNTs by 58–80% upon addition of 100 μM dopamine depending on the SWCNT chirality (n,m). In solution, the limit of detection was 11 nM [K d = 433 nM for (GT)15 DNA-wrapped SWCNTs]. Mechanistic studies revealed that this turn-on response is due to an increase in fluorescence quantum yield and not covalent modification of the SWCNT or scavenging of reactive oxygen species. When immobilized on a surface, the fluorescence intensity of a single DNA- or RNA-wrapped SWCNT is enhanced by a factor of up to 5.39 ± 1.44, whereby fluorescence signals are reversible. Our findings indicate that certain DNA/RNA coronae act as conformational switches on SWCNTs, which reversibly modulate the SWCNT fluorescence. These findings suggest that our polymer–SWCNT constructs can act as fluorescent neurotransmitter sensors in the tissue-compatible nIR optical window, which may find applications in neuroscience.</description><subject>Adsorption</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Molecular Structure</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Neurotransmitter Agents - analysis</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpt0E1LHTEUBuBQlHq1LvoHJJtCXYwmmcxkZlluqy34UarS5XAmOdG55CaaZMD-e1OvuhICIfCcl5yXkM-cHXEm-PEKJGeyrscPZMEbwaqGi3aLLBhjolJdW--Q3ZRW5SlFxz-SHSHrRsq6XZDHC5xjyBF8Wk85Y6TfMaPOU_D0Jk3-li5DDB7o7ztISM-DQz07iPQP6nDrp2dYzombQ8Sk0Wd6VcYcVn_BOTR0CXEs4AJ8yPOI9Ap9CjF9ItsWXML9l3uP3Jz8uF7-rM4uT38tv51VZac2Vw0YCXqUCrSyAi231oxGgzWd7aDpuEHJVQtWCOg6xcD0ZlTQ923P6xpVvUe-bnLvY3iYMeVhPZVvOgcew5wGLnumlFRCFHq4oTqGlCLa4T5Oa4j_Bs6G_0UPb0UXe_ASO49rNG_ytdkCvmwA6DSswhx92fKdoCeneod_</recordid><startdate>20140115</startdate><enddate>20140115</enddate><creator>Kruss, Sebastian</creator><creator>Landry, Markita P</creator><creator>Vander Ende, Emma</creator><creator>Lima, Barbara M.A</creator><creator>Reuel, Nigel F</creator><creator>Zhang, Jingqing</creator><creator>Nelson, Justin</creator><creator>Mu, Bin</creator><creator>Hilmer, Andrew</creator><creator>Strano, Michael</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140115</creationdate><title>Neurotransmitter Detection Using Corona Phase Molecular Recognition on Fluorescent Single-Walled Carbon Nanotube Sensors</title><author>Kruss, Sebastian ; Landry, Markita P ; Vander Ende, Emma ; Lima, Barbara M.A ; Reuel, Nigel F ; Zhang, Jingqing ; Nelson, Justin ; Mu, Bin ; Hilmer, Andrew ; Strano, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a416t-5ad4acb47ac7f2ef1ffdbdcafd8f8a581de4176af22a8870ad9db7a9969133e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adsorption</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Molecular Structure</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Neurotransmitter Agents - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kruss, Sebastian</creatorcontrib><creatorcontrib>Landry, Markita P</creatorcontrib><creatorcontrib>Vander Ende, Emma</creatorcontrib><creatorcontrib>Lima, Barbara M.A</creatorcontrib><creatorcontrib>Reuel, Nigel F</creatorcontrib><creatorcontrib>Zhang, Jingqing</creatorcontrib><creatorcontrib>Nelson, Justin</creatorcontrib><creatorcontrib>Mu, Bin</creatorcontrib><creatorcontrib>Hilmer, Andrew</creatorcontrib><creatorcontrib>Strano, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kruss, Sebastian</au><au>Landry, Markita P</au><au>Vander Ende, Emma</au><au>Lima, Barbara M.A</au><au>Reuel, Nigel F</au><au>Zhang, Jingqing</au><au>Nelson, Justin</au><au>Mu, Bin</au><au>Hilmer, Andrew</au><au>Strano, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neurotransmitter Detection Using Corona Phase Molecular Recognition on Fluorescent Single-Walled Carbon Nanotube Sensors</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2014-01-15</date><risdate>2014</risdate><volume>136</volume><issue>2</issue><spage>713</spage><epage>724</epage><pages>713-724</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Temporal and spatial changes in neurotransmitter concentrations are central to information processing in neural networks. Therefore, biosensors for neurotransmitters are essential tools for neuroscience. In this work, we applied a new technique, corona phase molecular recognition (CoPhMoRe), to identify adsorbed polymer phases on fluorescent single-walled carbon nanotubes (SWCNTs) that allow for the selective detection of specific neurotransmitters, including dopamine. We functionalized and suspended SWCNTs with a library of different polymers (n = 30) containing phospholipids, nucleic acids, and amphiphilic polymers to study how neurotransmitters modulate the resulting band gap, near-infrared (nIR) fluorescence of the SWCNT. We identified several corona phases that enable the selective detection of neurotransmitters. Catecholamines such as dopamine increased the fluorescence of specific single-stranded DNA- and RNA-wrapped SWCNTs by 58–80% upon addition of 100 μM dopamine depending on the SWCNT chirality (n,m). In solution, the limit of detection was 11 nM [K d = 433 nM for (GT)15 DNA-wrapped SWCNTs]. Mechanistic studies revealed that this turn-on response is due to an increase in fluorescence quantum yield and not covalent modification of the SWCNT or scavenging of reactive oxygen species. When immobilized on a surface, the fluorescence intensity of a single DNA- or RNA-wrapped SWCNT is enhanced by a factor of up to 5.39 ± 1.44, whereby fluorescence signals are reversible. Our findings indicate that certain DNA/RNA coronae act as conformational switches on SWCNTs, which reversibly modulate the SWCNT fluorescence. These findings suggest that our polymer–SWCNT constructs can act as fluorescent neurotransmitter sensors in the tissue-compatible nIR optical window, which may find applications in neuroscience.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24354436</pmid><doi>10.1021/ja410433b</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2014-01, Vol.136 (2), p.713-724
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1490774722
source Access via American Chemical Society
subjects Adsorption
Fluorescent Dyes - chemistry
Microscopy, Fluorescence - methods
Molecular Structure
Nanotubes, Carbon - chemistry
Neurotransmitter Agents - analysis
title Neurotransmitter Detection Using Corona Phase Molecular Recognition on Fluorescent Single-Walled Carbon Nanotube Sensors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neurotransmitter%20Detection%20Using%20Corona%20Phase%20Molecular%20Recognition%20on%20Fluorescent%20Single-Walled%20Carbon%20Nanotube%20Sensors&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Kruss,%20Sebastian&rft.date=2014-01-15&rft.volume=136&rft.issue=2&rft.spage=713&rft.epage=724&rft.pages=713-724&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja410433b&rft_dat=%3Cproquest_cross%3E1490774722%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a416t-5ad4acb47ac7f2ef1ffdbdcafd8f8a581de4176af22a8870ad9db7a9969133e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1490774722&rft_id=info:pmid/24354436&rfr_iscdi=true