Loading…

Quantum computing on encrypted data

The ability to perform computations on encrypted data is a powerful tool for protecting privacy. Recently, protocols to achieve this on classical computing systems have been found. Here, we present an efficient solution to the quantum analogue of this problem that enables arbitrary quantum computati...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2014-01, Vol.5 (1), p.3074-3074, Article 3074
Main Authors: Fisher, K. A. G., Broadbent, A., Shalm, L. K., Yan, Z., Lavoie, J., Prevedel, R., Jennewein, T., Resch, K. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ability to perform computations on encrypted data is a powerful tool for protecting privacy. Recently, protocols to achieve this on classical computing systems have been found. Here, we present an efficient solution to the quantum analogue of this problem that enables arbitrary quantum computations to be carried out on encrypted quantum data. We prove that an untrusted server can implement a universal set of quantum gates on encrypted quantum bits (qubits) without learning any information about the inputs, while the client, knowing the decryption key, can easily decrypt the results of the computation. We experimentally demonstrate, using single photons and linear optics, the encryption and decryption scheme on a set of gates sufficient for arbitrary quantum computations. As our protocol requires few extra resources compared with other schemes it can be easily incorporated into the design of future quantum servers. These results will play a key role in enabling the development of secure distributed quantum systems. Practical quantum computers will require protocols to carry out computation on encrypted data, just like their classical counterparts. Here, the authors present such a protocol that allows an untrusted server to implement universal quantum gates on encrypted qubits without learning about the inputs.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms4074