Loading…

Phenotyping for resistance to the sugarcane aphid Melanaphis sacchari (Hemiptera: Aphididae) in Sorghum bicolor (Poaceae)

The sugarcane aphid Melanaphis sacchari (Zehnt.) has become a serious pest of sorghum, particularly during the post-rainy season in India and East and Southern Africa. Therefore, we tested a number of techniques to screen sorghum genotypes for their resistance to M. sacchari. Infesting the plants wi...

Full description

Saved in:
Bibliographic Details
Published in:International journal of tropical insect science 2013-12, Vol.33 (4), p.227-238
Main Authors: Sharma, Hari C., Sharma, Suraj P., Munghate, Rajendra S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The sugarcane aphid Melanaphis sacchari (Zehnt.) has become a serious pest of sorghum, particularly during the post-rainy season in India and East and Southern Africa. Therefore, we tested a number of techniques to screen sorghum genotypes for their resistance to M. sacchari. Infesting the plants with aphid-infested leaf cuttings and covering with a nylon net was effective in screening sorghum genotypes for their resistance to M. sacchari. Sprinkling the plants with aphids (filled in an 0.5 ml eppendorf tube) in the greenhouse was also used to confirm whether the resistance of genotypes selected is less susceptible to the aphids under natural infestation. Nine genotypes (Line 61510, ICSV 12001, ICSV 12002, ICSV 12003, ICSV 12004, ICSV 12005, SLR 41, PU 10-1 and DJ 6514) exhibited moderate levels of resistance to M. sacchari. These genotypes also exhibited a lower rate of aphid multiplication in the clip cage and leaf disc assays. The rates of aphid multiplication were lower on the genotypes IS 21807, IS 40615, IS 40616 and IS 40618 than on the susceptible check, Swarna in the clip cage assay under the field conditions. Also, lower rates of aphid increase were also recorded on IS 21807 and IS 40615 in the leaf disc assay under laboratory conditions. Some of the genotypes that exhibited resistance to aphid damage under field conditions showed comparatively higher rates of aphid increase than the susceptible check, Swarna in the clip cage assay, indicating that antixenosis could be one of the components of resistance to M. sacchari in these genotypes. Therefore, the clip cage assay could be used to gain further understanding of the mechanisms of resistance to M. sacchari. There is a need to assess the role of antixenosis and colonization in genotypic reaction against M. sacchari to identify the lines with different mechanisms of resistance to this pest. The results suggested that the nylon net technique could be used to screen sorghum genotypes for resistance to M. sacchari. The genotypes exhibiting resistance to M. sacchari can be used to develop aphid-resistant sorghums for sustainable crop production.
ISSN:1742-7584
1742-7592
DOI:10.1017/S1742758413000271