Loading…

Hydrogen Peroxide and Ecdysone in the Cryprotective Dehydration Strategy of Megaphorura Arctica (Onychiuridae: Collembola)

The Arctic springtail, Megaphorura arctica, survives sub-zero temperatures in a dehydrated state via trehalose-dependent cryoprotective dehydration. Regulation of trehalose biosynthesis is complex; based in part on studies in yeast and fungi, its connection with oxidative stress caused by exposure o...

Full description

Saved in:
Bibliographic Details
Published in:Archives of insect biochemistry and physiology 2013-02, Vol.82 (2), p.59-70
Main Authors: Grubor-Lajsic, Gordana, Petri, Edward T, Kojic, Danijela, Purac, Jelena, Popovic, eljko D, Worland, Roger M, Clark, Melody S, Mojovic, Milos, Blagojevic, Dusko P
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Arctic springtail, Megaphorura arctica, survives sub-zero temperatures in a dehydrated state via trehalose-dependent cryoprotective dehydration. Regulation of trehalose biosynthesis is complex; based in part on studies in yeast and fungi, its connection with oxidative stress caused by exposure of cells to oxidants, such as hydrogen peroxide (H sub(2)O sub(2)), or dehydration, is well documented. In this respect, we measured the amount of H sub(2)O sub(2) and antioxidant enzyme activities (superoxide dismutases: copper, zinc-CuZnSOD and manganese containing-MnSOD, and catalase-CAT), as the regulatory components determining H sub(2)O sub(2) concentrations, in Arctic springtails incubated at 5 degree C (control) versus -2 degree C (threshold temperature for trehalose biosynthesis). Because ecdysone also stimulates trehalose production in insects and regulates the expression of genes involved in redox homeostasis and antioxidant protection in Drosophila, we measured the levels of the active physiological form of ecdysone-20-hydroxyecdysone (20-HE). Significantly elevated H sub(2)O sub(2) and 20-HE levels were observed in M. arctica incubated at -2 degree C, supporting a link between ecdysone, H sub(2)O sub(2), and trehalose levels during cryoprotective dehydration. CAT activity was found to be significantly lower in M. arctica incubated at -2 degree C versus 5 degree C, suggesting reduced H sub(2)O sub(2) breakdown. Furthermore, measurement of the free radical composition in Arctic springtails incubated at 5 degree C (controls) versus -2 degree C by Electron Paramagnetic Resonance spectroscopy revealed melanin-derived free radicals at -2 degree C, perhaps an additional source of H sub(2)O sub(2). Our results suggest that H sub(2)O sub(2) and ecdysone play important roles in the cryoprotective dehydration process in M. arctica, linked with the regulation of trehalose biosynthesis.
ISSN:0739-4462
1520-6327
DOI:10.1002/arch.21073