Loading…

Sensorimotor development in neonatal progesterone receptor knockout mice

ABSTRACT Early exposure to steroid hormones can permanently and dramatically alter neural development. This is best understood in the organizational effects of hormones during development of brain regions involved in reproductive behaviors or neuroendocrine function. However, recent evidence strongl...

Full description

Saved in:
Bibliographic Details
Published in:Developmental neurobiology (Hoboken, N.J.) N.J.), 2014-01, Vol.74 (1), p.16-24
Main Authors: Willing, Jari, Wagner, Christine K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Early exposure to steroid hormones can permanently and dramatically alter neural development. This is best understood in the organizational effects of hormones during development of brain regions involved in reproductive behaviors or neuroendocrine function. However, recent evidence strongly suggests that steroid hormones play a vital role in shaping brain regions involved in cognitive behavior such as the cerebral cortex. The most abundantly expressed steroid hormone receptor in the developing rodent cortex is the progesterone receptor (PR). In the rat, PR is initially expressed in the developmentally‐critical subplate at E18, and subsequently in laminas V and II/III through the first three postnatal weeks (Quadros et al. [2007] J Comp Neurol 504:42–56; Lopez & Wagner [2009]: J Comp Neurol 512:124–139), coinciding with significant periods of dendritic maturation, the arrival of afferents and synaptogenesis. In the present study, we investigated PR expression in the neonatal mouse somatosensory cortex. Additionally, to investigate the potential role of PR in developing cortex, we examined sensorimotor function in the first two postnatal weeks in PR knockout mice and their wildtype (WT) and heterozygous (HZ) counterparts. While the three genotypes were similar in most regards, PRKO and HZ mice lost the rooting reflex 2–3 days earlier than WT mice. These studies represent the first developmental behavioral assessment of PRKO mice and suggest PR expression may play an important role in the maturation of cortical connectivity and sensorimotor integration. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 16–24, 2014
ISSN:1932-8451
1932-846X
DOI:10.1002/dneu.22124