Loading…

Limits on ecosystem trophic complexity: insights from ecological network analysis

Articulating what limits the length of trophic food chains has remained one of the most enduring challenges in ecology. Mere counts of ecosystem species and transfers have not much illumined the issue, in part because magnitudes of trophic transfers vary by orders of magnitude in power‐law fashion....

Full description

Saved in:
Bibliographic Details
Published in:Ecology letters 2014-02, Vol.17 (2), p.127-136
Main Authors: Ulanowicz, Robert E, Holt, Robert D, Barfield, Michael, Gross, Kevin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Articulating what limits the length of trophic food chains has remained one of the most enduring challenges in ecology. Mere counts of ecosystem species and transfers have not much illumined the issue, in part because magnitudes of trophic transfers vary by orders of magnitude in power‐law fashion. We address this issue by creating a suite of measures that extend the basic indexes usually obtained by counting taxa and transfers so as to apply to networks wherein magnitudes vary by orders of magnitude. Application of the extended measures to data on ecosystem trophic networks reveals that the actual complexity of ecosystem webs is far less than usually imagined, because most ecosystem networks consist of a multitude of weak connections dominated by a relatively few strong flows. Although quantitative ecosystem networks may consist of hundreds of nodes and thousands of transfers, they nevertheless behave similarly to simpler representations of systems with fewer than 14 nodes or 40 flows. Both theory and empirical data point to an upper bound on the number of effective trophic levels at about 3–4 links. We suggest that several whole‐system processes may be at play in generating these ecosystem limits and regularities.
ISSN:1461-023X
1461-0248
DOI:10.1111/ele.12216