Loading…

Effects of photosynthesis on the survival and weight retention of two kleptoplastic sacoglossan opisthobranchs

Many sacoglossan sea slugs utilize chloroplasts ingested from food algae for photosynthesis (functional kleptoplasty), and the extent and duration of kleptoplast retention differs greatly among sacoglossan species. Although most recent studies focus on the genetic, microscopic, or physiological mech...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Marine Biological Association of the United Kingdom 2013-02, Vol.93 (1), p.209-215
Main Authors: Yamamoto, Shoko, Hirano, Yayoi M., Hirano, Yoshiaki J., Trowbridge, Cynthia D., Akimoto, Ayana, Sakai, Atsushi, Yusa, Yoichi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many sacoglossan sea slugs utilize chloroplasts ingested from food algae for photosynthesis (functional kleptoplasty), and the extent and duration of kleptoplast retention differs greatly among sacoglossan species. Although most recent studies focus on the genetic, microscopic, or physiological mechanisms responsible for this unique phenomenon, its effects on the life history traits of sacoglossans have not been fully explored. To study the effects of light conditions on survival and weight retention, adult individuals of two sacoglossan species, Elysia trisinuata and Plakobranchus ocellatus (‘black type'), were reared under light conditions (a 14-hour light: 10-hour dark photoperiod with an irradiance level of 28 µmol m−2s−1) or complete darkness for 21 days. There was no significant difference in the survival rate between the light and dark treatments for E. trisinuata, and its wet weight relative to the initial weight was smaller in the light than in the dark. However, both the survival and relative weights were greater in the light than dark for P. ocellatus. Based on the fluorescent yield measurement using pulse-amplitude-modulated fluorometry, the retention duration of functional chloroplasts was longer (>17 days) for P. ocellatus than E. trisinuata (
ISSN:0025-3154
1469-7769
DOI:10.1017/S0025315412000628