Loading…

Unsaturated fatty acids and phytosterols regulate cholesterol transporter genes in Caco-2 and HepG2 cell lines

Dietary consumption of phytosterols and certain fatty acids has been shown to reduce cholesterol absorption and plasma cholesterol concentrations. However, it has not been fully elucidated whether phytosterols or fatty acids can alter the expression of cholesterol transporters by functioning as sign...

Full description

Saved in:
Bibliographic Details
Published in:Nutrition research (New York, N.Y.) N.Y.), 2013-02, Vol.33 (2), p.154-161
Main Authors: Park, Youngki, Carr, Timothy P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dietary consumption of phytosterols and certain fatty acids has been shown to reduce cholesterol absorption and plasma cholesterol concentrations. However, it has not been fully elucidated whether phytosterols or fatty acids can alter the expression of cholesterol transporters by functioning as signaling molecules. This study tested the hypothesis that various fatty acids and phytosterols commonly found in the food supply can modulate the expression of transporters including Niemann-Pick C1-like 1, low-density lipoprotein receptor, and scavenger receptor class B type I and 3-hydroxy-3-methylglutaryl-coenzyme A reductase in the intestine and liver. Caco-2 cells were used as models of enterocytes, and HepG2 cells were used as a model of hepatocytes. The cells were treated for 18 hours with 100 μmol/L of a fatty acid, or for 24 hours with 10 μmol/L of 25α-hydroxycholesterol, or 100 μmol/L of cholesterol, sitosterol, and stigmasterol to measure expression of genes involved in cholesterol transport using quantitative real-time polymerase chain reaction. Polyunsaturated fatty acids in Caco-2 cells and sterols in HepG2 cells significantly reduced the messenger RNA expression levels of Niemann-Pick C1-like 1, scavenger receptor class B type I, low-density lipoprotein receptor, and 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Importantly, sitosterol and stigmasterol reduced the messenger RNA levels of genes to a similar extent as cholesterol. The data support the hypothesis that unsaturated fatty acid and phytosterols can act as signaling molecules and alter the expression of genes involved in cholesterol transport and metabolism.
ISSN:0271-5317
1879-0739
DOI:10.1016/j.nutres.2012.11.014