Loading…
Gaussian mixture model-based classification of dynamic contrast enhanced MRI data for identifying diverse tumor microenvironments: preliminary results
Tumor hypoxia develops heterogeneously, affects radiation sensitivity and the development of metastases. Prognostic information derived from the in vivo characterization of the spatial distribution of hypoxic areas in solid tumors can be of value for radiation therapy planning and for monitoring the...
Saved in:
Published in: | NMR in biomedicine 2013-05, Vol.26 (5), p.519-532 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4548-c00ed19debf3681815b5c98e93080887c40da5dfe0bc8898576cc25d30cf6dc73 |
---|---|
cites | cdi_FETCH-LOGICAL-c4548-c00ed19debf3681815b5c98e93080887c40da5dfe0bc8898576cc25d30cf6dc73 |
container_end_page | 532 |
container_issue | 5 |
container_start_page | 519 |
container_title | NMR in biomedicine |
container_volume | 26 |
creator | Han, S. H. Ackerstaff, E. Stoyanova, R. Carlin, S. Huang, W. Koutcher, J. A. Kim, J. K. Cho, G. Jang, G. Cho, H. |
description | Tumor hypoxia develops heterogeneously, affects radiation sensitivity and the development of metastases. Prognostic information derived from the in vivo characterization of the spatial distribution of hypoxic areas in solid tumors can be of value for radiation therapy planning and for monitoring the early treatment response. Tumor hypoxia is caused by an imbalance between the supply and consumption of oxygen. The tumor oxygen supply is inherently linked to its vasculature and perfusion which can be evaluated by dynamic contrast enhanced (DCE‐) MRI using the contrast agent Gd‐DTPA. Thus, we hypothesize that DCE‐MRI data may provide surrogate information regarding tumor hypoxia. In this study, DCE‐MRI data from a rat prostate tumor model were analysed with a Gaussian mixture model (GMM)‐based classification to identify perfused, hypoxic and necrotic areas for a total of ten tumor slices from six rats, of which one slice was used as training data for GMM classifications. The results of pattern recognition analyzes were validated by comparison to corresponding Akep maps defining the perfused area (0.84 ± 0.09 overlap), hematoxylin and eosin (H&E)‐stained tissue sections defining necrosis (0.64 ± 0.15 overlap) and pimonidazole‐stained sections defining hypoxia (0.72 ± 0.17 overlap), respectively. Our preliminary data indicate the feasibility of a GMM‐based classification to identify tumor hypoxia, necrosis and perfusion/permeability from non‐invasively acquired, in vivo DCE‐MRI data alone, possibly obviating the need for invasive procedures, such as biopsies, or exposure to radioactivity, such as positron emission tomography (PET) exams. Copyright © 2013 John Wiley & Sons, Ltd.
(A) Akep map from dynamic contrast enhanced (DCE)‐MRI with, corresponding (B) pimonidazole and (C) hematoxylin and eosin (H&E) images. (D) The combined mask of well‐perfused (red), hypoxic (yellow) and necrotic (blue) areas of this tumor slice obtained based on the binary masks from (A‐1), (B‐1) and (C‐1). (E) displays for the same tumor slice the spatial distribution of perfused, hypoxic, and necrotic areas obtained from Gaussian mixture model (GMM) categorization of DCE‐MRI uptake curves. |
doi_str_mv | 10.1002/nbm.2888 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1492634246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3150722881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4548-c00ed19debf3681815b5c98e93080887c40da5dfe0bc8898576cc25d30cf6dc73</originalsourceid><addsrcrecordid>eNp10dFqFDEUBuAgil2r4BNIwBtvpp6ZZGYy3uli10JbQRQvQyY5o6mTZJtkavdFfF6zdK0geJWL8-UnJz8hz2s4qQGa1350J40Q4gFZ1TAMVc2H5iFZwdA2FeMCjsiTlK4AQHDWPCZHDeMcOsFW5NdGLSlZ5amzt3mJSF0wOFejSmionlUZTlarbIOnYaJm55Wzmurgc1QpU_TfldfFXnw6o0ZlRacQqTXos5121n-jxt5gTEjz4sqkXI4B_Y2NwbuC0hu6jThbZ72KOxoxLXNOT8mjSc0Jnx3OY_Ll9P3n9Yfq_OPmbP32vNK85aLSAGjqweA4sU7Uom7HVg8CBwYChOg1B6NaMyGMWohBtH2nddMaBnrqjO7ZMXl1l7uN4XrBlKWzSeM8K49hSXL_kR3jDe8KffkPvQpL9OV1RXVdIYLD38CyZUoRJ7mN1pXNZA1y35UsXcl9V4W-OAQuo0NzD_-UU0B1B37aGXf_DZKX7y4OgQdvU8bbe6_iD9n1rG_l18uNHMRmva7XQp6y343hr7M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1466246840</pqid></control><display><type>article</type><title>Gaussian mixture model-based classification of dynamic contrast enhanced MRI data for identifying diverse tumor microenvironments: preliminary results</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Han, S. H. ; Ackerstaff, E. ; Stoyanova, R. ; Carlin, S. ; Huang, W. ; Koutcher, J. A. ; Kim, J. K. ; Cho, G. ; Jang, G. ; Cho, H.</creator><creatorcontrib>Han, S. H. ; Ackerstaff, E. ; Stoyanova, R. ; Carlin, S. ; Huang, W. ; Koutcher, J. A. ; Kim, J. K. ; Cho, G. ; Jang, G. ; Cho, H.</creatorcontrib><description>Tumor hypoxia develops heterogeneously, affects radiation sensitivity and the development of metastases. Prognostic information derived from the in vivo characterization of the spatial distribution of hypoxic areas in solid tumors can be of value for radiation therapy planning and for monitoring the early treatment response. Tumor hypoxia is caused by an imbalance between the supply and consumption of oxygen. The tumor oxygen supply is inherently linked to its vasculature and perfusion which can be evaluated by dynamic contrast enhanced (DCE‐) MRI using the contrast agent Gd‐DTPA. Thus, we hypothesize that DCE‐MRI data may provide surrogate information regarding tumor hypoxia. In this study, DCE‐MRI data from a rat prostate tumor model were analysed with a Gaussian mixture model (GMM)‐based classification to identify perfused, hypoxic and necrotic areas for a total of ten tumor slices from six rats, of which one slice was used as training data for GMM classifications. The results of pattern recognition analyzes were validated by comparison to corresponding Akep maps defining the perfused area (0.84 ± 0.09 overlap), hematoxylin and eosin (H&E)‐stained tissue sections defining necrosis (0.64 ± 0.15 overlap) and pimonidazole‐stained sections defining hypoxia (0.72 ± 0.17 overlap), respectively. Our preliminary data indicate the feasibility of a GMM‐based classification to identify tumor hypoxia, necrosis and perfusion/permeability from non‐invasively acquired, in vivo DCE‐MRI data alone, possibly obviating the need for invasive procedures, such as biopsies, or exposure to radioactivity, such as positron emission tomography (PET) exams. Copyright © 2013 John Wiley & Sons, Ltd.
(A) Akep map from dynamic contrast enhanced (DCE)‐MRI with, corresponding (B) pimonidazole and (C) hematoxylin and eosin (H&E) images. (D) The combined mask of well‐perfused (red), hypoxic (yellow) and necrotic (blue) areas of this tumor slice obtained based on the binary masks from (A‐1), (B‐1) and (C‐1). (E) displays for the same tumor slice the spatial distribution of perfused, hypoxic, and necrotic areas obtained from Gaussian mixture model (GMM) categorization of DCE‐MRI uptake curves.</description><identifier>ISSN: 0952-3480</identifier><identifier>EISSN: 1099-1492</identifier><identifier>DOI: 10.1002/nbm.2888</identifier><identifier>PMID: 23440683</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animal models ; Animals ; Cell Hypoxia ; Cell Line, Tumor ; Contrast Media ; DCE-MRI ; Gaussian mixture model ; hypoxia ; Image Enhancement ; Magnetic Resonance Imaging - methods ; Male ; Necrosis ; Normal Distribution ; Pattern Recognition, Automated ; preclinical prostate model ; Prostatic Neoplasms - blood supply ; Prostatic Neoplasms - pathology ; Rats ; Tumor Microenvironment ; tumor microenvironments</subject><ispartof>NMR in biomedicine, 2013-05, Vol.26 (5), p.519-532</ispartof><rights>Copyright © 2013 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4548-c00ed19debf3681815b5c98e93080887c40da5dfe0bc8898576cc25d30cf6dc73</citedby><cites>FETCH-LOGICAL-c4548-c00ed19debf3681815b5c98e93080887c40da5dfe0bc8898576cc25d30cf6dc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23440683$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, S. H.</creatorcontrib><creatorcontrib>Ackerstaff, E.</creatorcontrib><creatorcontrib>Stoyanova, R.</creatorcontrib><creatorcontrib>Carlin, S.</creatorcontrib><creatorcontrib>Huang, W.</creatorcontrib><creatorcontrib>Koutcher, J. A.</creatorcontrib><creatorcontrib>Kim, J. K.</creatorcontrib><creatorcontrib>Cho, G.</creatorcontrib><creatorcontrib>Jang, G.</creatorcontrib><creatorcontrib>Cho, H.</creatorcontrib><title>Gaussian mixture model-based classification of dynamic contrast enhanced MRI data for identifying diverse tumor microenvironments: preliminary results</title><title>NMR in biomedicine</title><addtitle>NMR Biomed</addtitle><description>Tumor hypoxia develops heterogeneously, affects radiation sensitivity and the development of metastases. Prognostic information derived from the in vivo characterization of the spatial distribution of hypoxic areas in solid tumors can be of value for radiation therapy planning and for monitoring the early treatment response. Tumor hypoxia is caused by an imbalance between the supply and consumption of oxygen. The tumor oxygen supply is inherently linked to its vasculature and perfusion which can be evaluated by dynamic contrast enhanced (DCE‐) MRI using the contrast agent Gd‐DTPA. Thus, we hypothesize that DCE‐MRI data may provide surrogate information regarding tumor hypoxia. In this study, DCE‐MRI data from a rat prostate tumor model were analysed with a Gaussian mixture model (GMM)‐based classification to identify perfused, hypoxic and necrotic areas for a total of ten tumor slices from six rats, of which one slice was used as training data for GMM classifications. The results of pattern recognition analyzes were validated by comparison to corresponding Akep maps defining the perfused area (0.84 ± 0.09 overlap), hematoxylin and eosin (H&E)‐stained tissue sections defining necrosis (0.64 ± 0.15 overlap) and pimonidazole‐stained sections defining hypoxia (0.72 ± 0.17 overlap), respectively. Our preliminary data indicate the feasibility of a GMM‐based classification to identify tumor hypoxia, necrosis and perfusion/permeability from non‐invasively acquired, in vivo DCE‐MRI data alone, possibly obviating the need for invasive procedures, such as biopsies, or exposure to radioactivity, such as positron emission tomography (PET) exams. Copyright © 2013 John Wiley & Sons, Ltd.
(A) Akep map from dynamic contrast enhanced (DCE)‐MRI with, corresponding (B) pimonidazole and (C) hematoxylin and eosin (H&E) images. (D) The combined mask of well‐perfused (red), hypoxic (yellow) and necrotic (blue) areas of this tumor slice obtained based on the binary masks from (A‐1), (B‐1) and (C‐1). (E) displays for the same tumor slice the spatial distribution of perfused, hypoxic, and necrotic areas obtained from Gaussian mixture model (GMM) categorization of DCE‐MRI uptake curves.</description><subject>Animal models</subject><subject>Animals</subject><subject>Cell Hypoxia</subject><subject>Cell Line, Tumor</subject><subject>Contrast Media</subject><subject>DCE-MRI</subject><subject>Gaussian mixture model</subject><subject>hypoxia</subject><subject>Image Enhancement</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Necrosis</subject><subject>Normal Distribution</subject><subject>Pattern Recognition, Automated</subject><subject>preclinical prostate model</subject><subject>Prostatic Neoplasms - blood supply</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Rats</subject><subject>Tumor Microenvironment</subject><subject>tumor microenvironments</subject><issn>0952-3480</issn><issn>1099-1492</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp10dFqFDEUBuAgil2r4BNIwBtvpp6ZZGYy3uli10JbQRQvQyY5o6mTZJtkavdFfF6zdK0geJWL8-UnJz8hz2s4qQGa1350J40Q4gFZ1TAMVc2H5iFZwdA2FeMCjsiTlK4AQHDWPCZHDeMcOsFW5NdGLSlZ5amzt3mJSF0wOFejSmionlUZTlarbIOnYaJm55Wzmurgc1QpU_TfldfFXnw6o0ZlRacQqTXos5121n-jxt5gTEjz4sqkXI4B_Y2NwbuC0hu6jThbZ72KOxoxLXNOT8mjSc0Jnx3OY_Ll9P3n9Yfq_OPmbP32vNK85aLSAGjqweA4sU7Uom7HVg8CBwYChOg1B6NaMyGMWohBtH2nddMaBnrqjO7ZMXl1l7uN4XrBlKWzSeM8K49hSXL_kR3jDe8KffkPvQpL9OV1RXVdIYLD38CyZUoRJ7mN1pXNZA1y35UsXcl9V4W-OAQuo0NzD_-UU0B1B37aGXf_DZKX7y4OgQdvU8bbe6_iD9n1rG_l18uNHMRmva7XQp6y343hr7M</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Han, S. H.</creator><creator>Ackerstaff, E.</creator><creator>Stoyanova, R.</creator><creator>Carlin, S.</creator><creator>Huang, W.</creator><creator>Koutcher, J. A.</creator><creator>Kim, J. K.</creator><creator>Cho, G.</creator><creator>Jang, G.</creator><creator>Cho, H.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201305</creationdate><title>Gaussian mixture model-based classification of dynamic contrast enhanced MRI data for identifying diverse tumor microenvironments: preliminary results</title><author>Han, S. H. ; Ackerstaff, E. ; Stoyanova, R. ; Carlin, S. ; Huang, W. ; Koutcher, J. A. ; Kim, J. K. ; Cho, G. ; Jang, G. ; Cho, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4548-c00ed19debf3681815b5c98e93080887c40da5dfe0bc8898576cc25d30cf6dc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Cell Hypoxia</topic><topic>Cell Line, Tumor</topic><topic>Contrast Media</topic><topic>DCE-MRI</topic><topic>Gaussian mixture model</topic><topic>hypoxia</topic><topic>Image Enhancement</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Necrosis</topic><topic>Normal Distribution</topic><topic>Pattern Recognition, Automated</topic><topic>preclinical prostate model</topic><topic>Prostatic Neoplasms - blood supply</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Rats</topic><topic>Tumor Microenvironment</topic><topic>tumor microenvironments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, S. H.</creatorcontrib><creatorcontrib>Ackerstaff, E.</creatorcontrib><creatorcontrib>Stoyanova, R.</creatorcontrib><creatorcontrib>Carlin, S.</creatorcontrib><creatorcontrib>Huang, W.</creatorcontrib><creatorcontrib>Koutcher, J. A.</creatorcontrib><creatorcontrib>Kim, J. K.</creatorcontrib><creatorcontrib>Cho, G.</creatorcontrib><creatorcontrib>Jang, G.</creatorcontrib><creatorcontrib>Cho, H.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>NMR in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, S. H.</au><au>Ackerstaff, E.</au><au>Stoyanova, R.</au><au>Carlin, S.</au><au>Huang, W.</au><au>Koutcher, J. A.</au><au>Kim, J. K.</au><au>Cho, G.</au><au>Jang, G.</au><au>Cho, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gaussian mixture model-based classification of dynamic contrast enhanced MRI data for identifying diverse tumor microenvironments: preliminary results</atitle><jtitle>NMR in biomedicine</jtitle><addtitle>NMR Biomed</addtitle><date>2013-05</date><risdate>2013</risdate><volume>26</volume><issue>5</issue><spage>519</spage><epage>532</epage><pages>519-532</pages><issn>0952-3480</issn><eissn>1099-1492</eissn><abstract>Tumor hypoxia develops heterogeneously, affects radiation sensitivity and the development of metastases. Prognostic information derived from the in vivo characterization of the spatial distribution of hypoxic areas in solid tumors can be of value for radiation therapy planning and for monitoring the early treatment response. Tumor hypoxia is caused by an imbalance between the supply and consumption of oxygen. The tumor oxygen supply is inherently linked to its vasculature and perfusion which can be evaluated by dynamic contrast enhanced (DCE‐) MRI using the contrast agent Gd‐DTPA. Thus, we hypothesize that DCE‐MRI data may provide surrogate information regarding tumor hypoxia. In this study, DCE‐MRI data from a rat prostate tumor model were analysed with a Gaussian mixture model (GMM)‐based classification to identify perfused, hypoxic and necrotic areas for a total of ten tumor slices from six rats, of which one slice was used as training data for GMM classifications. The results of pattern recognition analyzes were validated by comparison to corresponding Akep maps defining the perfused area (0.84 ± 0.09 overlap), hematoxylin and eosin (H&E)‐stained tissue sections defining necrosis (0.64 ± 0.15 overlap) and pimonidazole‐stained sections defining hypoxia (0.72 ± 0.17 overlap), respectively. Our preliminary data indicate the feasibility of a GMM‐based classification to identify tumor hypoxia, necrosis and perfusion/permeability from non‐invasively acquired, in vivo DCE‐MRI data alone, possibly obviating the need for invasive procedures, such as biopsies, or exposure to radioactivity, such as positron emission tomography (PET) exams. Copyright © 2013 John Wiley & Sons, Ltd.
(A) Akep map from dynamic contrast enhanced (DCE)‐MRI with, corresponding (B) pimonidazole and (C) hematoxylin and eosin (H&E) images. (D) The combined mask of well‐perfused (red), hypoxic (yellow) and necrotic (blue) areas of this tumor slice obtained based on the binary masks from (A‐1), (B‐1) and (C‐1). (E) displays for the same tumor slice the spatial distribution of perfused, hypoxic, and necrotic areas obtained from Gaussian mixture model (GMM) categorization of DCE‐MRI uptake curves.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>23440683</pmid><doi>10.1002/nbm.2888</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0952-3480 |
ispartof | NMR in biomedicine, 2013-05, Vol.26 (5), p.519-532 |
issn | 0952-3480 1099-1492 |
language | eng |
recordid | cdi_proquest_miscellaneous_1492634246 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Animal models Animals Cell Hypoxia Cell Line, Tumor Contrast Media DCE-MRI Gaussian mixture model hypoxia Image Enhancement Magnetic Resonance Imaging - methods Male Necrosis Normal Distribution Pattern Recognition, Automated preclinical prostate model Prostatic Neoplasms - blood supply Prostatic Neoplasms - pathology Rats Tumor Microenvironment tumor microenvironments |
title | Gaussian mixture model-based classification of dynamic contrast enhanced MRI data for identifying diverse tumor microenvironments: preliminary results |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A54%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gaussian%20mixture%20model-based%20classification%20of%20dynamic%20contrast%20enhanced%20MRI%20data%20for%20identifying%20diverse%20tumor%20microenvironments:%20preliminary%20results&rft.jtitle=NMR%20in%20biomedicine&rft.au=Han,%20S.%20H.&rft.date=2013-05&rft.volume=26&rft.issue=5&rft.spage=519&rft.epage=532&rft.pages=519-532&rft.issn=0952-3480&rft.eissn=1099-1492&rft_id=info:doi/10.1002/nbm.2888&rft_dat=%3Cproquest_cross%3E3150722881%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4548-c00ed19debf3681815b5c98e93080887c40da5dfe0bc8898576cc25d30cf6dc73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1466246840&rft_id=info:pmid/23440683&rfr_iscdi=true |