Loading…
Isodicentric Y chromosomes in Egyptian patients with disorders of sex development (DSD)
Isodicentric chromosome formation is the most common structural abnormality of the Y chromosome. As dicentrics are mitotically unstable, they are subsequently lost during cell division resulting in mosaicism with a 45,X cell line. We report on six patients with variable signs of disorders of sex dev...
Saved in:
Published in: | American journal of medical genetics. Part A 2012-07, Vol.158A (7), p.1594-1603 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Isodicentric chromosome formation is the most common structural abnormality of the Y chromosome. As dicentrics are mitotically unstable, they are subsequently lost during cell division resulting in mosaicism with a 45,X cell line. We report on six patients with variable signs of disorders of sex development (DSD) including ambiguous genitalia, short stature, primary amenorrhea, and male infertility with azoospermia. Cytogenetic studies showed the presence of a sex chromosome marker in all patients; associated with a 45,X cell line in five of them. Fluorescence in situ hybridization (FISH) technique was used to determine the structure and the breakage sites of the markers that all proved to be isodicentric Y chromosomes. Three patients, were found to have similar breakpoints: idic Y(qter→ p11.32:: p11.32→ qter), two of them presented with ambiguous genitalia and were found to have ovotesticular DSD, while the third presented with short stature and hypomelanosis of Ito. One female patient presenting with primary amenorrhea, Turner manifestations and ambiguous genitalia revealed the breakpoint: idic Y (pter→q11.1::q11.1→pter). The same breakpoint was detected in a male with azoospermia but in non‐mosaic form. An infant with ambiguous genitalia and mixed gonadal dysgenesis (MGD) had the breakpoint at Yq11.2: idic Y(pter→q11.2::q11.2→pter). SRY signals were detected in all patients. Sequencing of the SRY gene was carried out for three patients with normal results. This study emphasizes the importance of FISH analysis in the diagnosis of patients with DSD as well as the establishment of the relationship between phenotype and karyotype. © 2012 Wiley Periodicals, Inc. |
---|---|
ISSN: | 1552-4825 1552-4833 |
DOI: | 10.1002/ajmg.a.35487 |