Loading…

Utility of SNP arrays in detecting, quantifying, and determining meiotic origin of tetrasomy 12p in blood from individuals with Pallister-Killian syndrome

Identification of the isochromosome 12p (i(12p)) associated with Pallister–Killian syndrome is complicated by the low frequency of this supernumerary chromosome in PHA stimulated peripheral blood lymphocytes, and frequently requires cytogenetic analysis of fibroblast cells. Recently, it has been sho...

Full description

Saved in:
Bibliographic Details
Published in:American journal of medical genetics. Part A 2012-12, Vol.158A (12), p.3046-3053
Main Authors: Conlin, Laura K., Kaur, Maninder, Izumi, Kosuke, Campbell, Lindsey, Wilkens, Alisha, Clark, Dinah, Deardorff, Matthew A., Zackai, Elaine H., Pallister, Phillip, Hakonarson, Hakon, Spinner, Nancy B., Krantz, Ian D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Identification of the isochromosome 12p (i(12p)) associated with Pallister–Killian syndrome is complicated by the low frequency of this supernumerary chromosome in PHA stimulated peripheral blood lymphocytes, and frequently requires cytogenetic analysis of fibroblast cells. Recently, it has been shown that array CGH techniques are able to detect tetrasomy 12p in peripheral blood, even when not identified by traditional cytogenetic techniques. We studied 15 patients with a previous cytogenetic and clinical diagnosis of Pallister–Killian syndrome using genome‐wide SNP arrays to investigate the ability of this platform to identify the i(12p) in blood and tissue. Array analysis verified tetrasomy 12p in all samples from fibroblasts, but was only able to detect it in 46% of blood samples. The genotyping information available from the SNP arrays allowed for the detection of as low as 5% mosaicism, as well as suggesting a Meiosis II origin for the isochromosome in the majority of patients. Analysis of the percentage of abnormal cells with patient age at time of study suggests that the frequency of the i(12p) decreased with age in blood, but not in fibroblasts. These highlight the power of SNP arrays in detecting and characterizing the isochromosome 12p in Pallister–Killian syndrome as well as underscoring the important utility of traditional cytogenetic techniques. © 2012 Wiley Periodicals, Inc.
ISSN:1552-4825
1552-4833
DOI:10.1002/ajmg.a.35726