Loading…

Enhanced Low-Latency Detection of Motor Intention From EEG for Closed-Loop Brain-Computer Interface Applications

In recent years, the detection of voluntary motor intentions from electroencephalogram (EEG) has been used for triggering external devices in closed-loop brain-computer interface (BCI) research. Movement-related cortical potentials (MRCP), a type of slow cortical potentials, have been recently used...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2014-02, Vol.61 (2), p.288-296
Main Authors: Xu, Ren, Jiang, Ning, Lin, Chuang, Mrachacz-Kersting, Natalie, Dremstrup, Kim, Farina, Dario
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c524t-b76bef17306e80405516208b1bad97b6abc3c50ef6ddbfbc7c262772f83fc07c3
cites cdi_FETCH-LOGICAL-c524t-b76bef17306e80405516208b1bad97b6abc3c50ef6ddbfbc7c262772f83fc07c3
container_end_page 296
container_issue 2
container_start_page 288
container_title IEEE transactions on biomedical engineering
container_volume 61
creator Xu, Ren
Jiang, Ning
Lin, Chuang
Mrachacz-Kersting, Natalie
Dremstrup, Kim
Farina, Dario
description In recent years, the detection of voluntary motor intentions from electroencephalogram (EEG) has been used for triggering external devices in closed-loop brain-computer interface (BCI) research. Movement-related cortical potentials (MRCP), a type of slow cortical potentials, have been recently used for detection. In order to enhance the efficacy of closed-loop BCI systems based on MRCPs, a manifold method called Locality Preserving Projection, followed by a linear discriminant analysis (LDA) classifier (LPP-LDA) is proposed in this paper to detect MRCPs from scalp EEG in real time. In an online experiment on nine healthy subjects, LPP-LDA statistically outperformed the classic matched filter approach with greater true positive rate (79 ± 11% versus 68 ± 10%; p = 0.007) and less false positives (1.4 ± 0.8/min versus 2.3 ± 1.1/min; p = 0.016). Moreover, the proposed system performed detections with significantly shorter latency (315 ± 165 ms versus 460 ± 123 ms; p = 0.013), which is a fundamental characteristics to induce neuroplastic changes in closed-loop BCIs, following the Hebbian principle. In conclusion, the proposed system works as a generic brain switch, with high accuracy, low latency, and easy online implementation. It can thus be used as a fundamental element of BCI systems for neuromodulation and motor function rehabilitation.
doi_str_mv 10.1109/TBME.2013.2294203
format article
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_1492674524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6678728</ieee_id><sourcerecordid>3237819751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-b76bef17306e80405516208b1bad97b6abc3c50ef6ddbfbc7c262772f83fc07c3</originalsourceid><addsrcrecordid>eNqFkc1q3DAUhUVoSCZpH6AUiqCbbjzRv-RlMnXSgEM36drI8hV1sC1Xsil5-2o6kyy6CQguuuc7By4HoY-UbCkl5dXjzUO1ZYTyLWOlYISfoA2V0hRMcvoObQihpiizdI4uUnrKX2GEOkPnTAhhZMk3aK6mX3Zy0OE6_Clqu8DknvE3WMAtfZhw8PghLCHi-ylL_1a3MYy4qu6wz-vdEBJ0RR3CjG-i7adiF8Z5XeDgiN46wNfzPPTO7t3pPTr1dkjw4Tgv0c_b6nH3vah_3N3vruvCSSaWotWqBU81JwoMEURKqhgxLW1tV-pW2dZxJwl41XWtb512TDGtmTfcO6Idv0RfD7lzDL9XSEsz9snBMNgJwpoaqjQV-XH5Niop44yWgryNipIpLfIJGf3yH_oU1jjlm3MgEVJIQ0ym6IFyMaQUwTdz7EcbnxtKmn3Jzb7kZl9ycyw5ez4fk9d2hO7V8dJqBj4dgB4AXmWltNHM8L80LKl9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1504545808</pqid></control><display><type>article</type><title>Enhanced Low-Latency Detection of Motor Intention From EEG for Closed-Loop Brain-Computer Interface Applications</title><source>IEEE Xplore All Conference Series</source><creator>Xu, Ren ; Jiang, Ning ; Lin, Chuang ; Mrachacz-Kersting, Natalie ; Dremstrup, Kim ; Farina, Dario</creator><creatorcontrib>Xu, Ren ; Jiang, Ning ; Lin, Chuang ; Mrachacz-Kersting, Natalie ; Dremstrup, Kim ; Farina, Dario</creatorcontrib><description>In recent years, the detection of voluntary motor intentions from electroencephalogram (EEG) has been used for triggering external devices in closed-loop brain-computer interface (BCI) research. Movement-related cortical potentials (MRCP), a type of slow cortical potentials, have been recently used for detection. In order to enhance the efficacy of closed-loop BCI systems based on MRCPs, a manifold method called Locality Preserving Projection, followed by a linear discriminant analysis (LDA) classifier (LPP-LDA) is proposed in this paper to detect MRCPs from scalp EEG in real time. In an online experiment on nine healthy subjects, LPP-LDA statistically outperformed the classic matched filter approach with greater true positive rate (79 ± 11% versus 68 ± 10%; p = 0.007) and less false positives (1.4 ± 0.8/min versus 2.3 ± 1.1/min; p = 0.016). Moreover, the proposed system performed detections with significantly shorter latency (315 ± 165 ms versus 460 ± 123 ms; p = 0.013), which is a fundamental characteristics to induce neuroplastic changes in closed-loop BCIs, following the Hebbian principle. In conclusion, the proposed system works as a generic brain switch, with high accuracy, low latency, and easy online implementation. It can thus be used as a fundamental element of BCI systems for neuromodulation and motor function rehabilitation.</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.2013.2294203</identifier><identifier>PMID: 24448593</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Brain-computer interface ; Brain-Computer Interfaces ; Devices ; Discriminant analysis ; Educational institutions ; Electrodes ; electroencephalogram (EEG) ; Electroencephalography ; Electroencephalography - methods ; Electromyography ; Evoked Potentials, Motor - physiology ; Human-computer interface ; Humans ; Locality Preserving Projection ; Matched filters ; motor intention ; Motors ; movement-related cortical potentials (MRCP) ; On-line systems ; Online ; Signal Processing, Computer-Assisted ; Testing ; Training</subject><ispartof>IEEE transactions on biomedical engineering, 2014-02, Vol.61 (2), p.288-296</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-b76bef17306e80405516208b1bad97b6abc3c50ef6ddbfbc7c262772f83fc07c3</citedby><cites>FETCH-LOGICAL-c524t-b76bef17306e80405516208b1bad97b6abc3c50ef6ddbfbc7c262772f83fc07c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6678728$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54530,54771,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6678728$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24448593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Ren</creatorcontrib><creatorcontrib>Jiang, Ning</creatorcontrib><creatorcontrib>Lin, Chuang</creatorcontrib><creatorcontrib>Mrachacz-Kersting, Natalie</creatorcontrib><creatorcontrib>Dremstrup, Kim</creatorcontrib><creatorcontrib>Farina, Dario</creatorcontrib><title>Enhanced Low-Latency Detection of Motor Intention From EEG for Closed-Loop Brain-Computer Interface Applications</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>In recent years, the detection of voluntary motor intentions from electroencephalogram (EEG) has been used for triggering external devices in closed-loop brain-computer interface (BCI) research. Movement-related cortical potentials (MRCP), a type of slow cortical potentials, have been recently used for detection. In order to enhance the efficacy of closed-loop BCI systems based on MRCPs, a manifold method called Locality Preserving Projection, followed by a linear discriminant analysis (LDA) classifier (LPP-LDA) is proposed in this paper to detect MRCPs from scalp EEG in real time. In an online experiment on nine healthy subjects, LPP-LDA statistically outperformed the classic matched filter approach with greater true positive rate (79 ± 11% versus 68 ± 10%; p = 0.007) and less false positives (1.4 ± 0.8/min versus 2.3 ± 1.1/min; p = 0.016). Moreover, the proposed system performed detections with significantly shorter latency (315 ± 165 ms versus 460 ± 123 ms; p = 0.013), which is a fundamental characteristics to induce neuroplastic changes in closed-loop BCIs, following the Hebbian principle. In conclusion, the proposed system works as a generic brain switch, with high accuracy, low latency, and easy online implementation. It can thus be used as a fundamental element of BCI systems for neuromodulation and motor function rehabilitation.</description><subject>Accuracy</subject><subject>Brain-computer interface</subject><subject>Brain-Computer Interfaces</subject><subject>Devices</subject><subject>Discriminant analysis</subject><subject>Educational institutions</subject><subject>Electrodes</subject><subject>electroencephalogram (EEG)</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Electromyography</subject><subject>Evoked Potentials, Motor - physiology</subject><subject>Human-computer interface</subject><subject>Humans</subject><subject>Locality Preserving Projection</subject><subject>Matched filters</subject><subject>motor intention</subject><subject>Motors</subject><subject>movement-related cortical potentials (MRCP)</subject><subject>On-line systems</subject><subject>Online</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Testing</subject><subject>Training</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkc1q3DAUhUVoSCZpH6AUiqCbbjzRv-RlMnXSgEM36drI8hV1sC1Xsil5-2o6kyy6CQguuuc7By4HoY-UbCkl5dXjzUO1ZYTyLWOlYISfoA2V0hRMcvoObQihpiizdI4uUnrKX2GEOkPnTAhhZMk3aK6mX3Zy0OE6_Clqu8DknvE3WMAtfZhw8PghLCHi-ylL_1a3MYy4qu6wz-vdEBJ0RR3CjG-i7adiF8Z5XeDgiN46wNfzPPTO7t3pPTr1dkjw4Tgv0c_b6nH3vah_3N3vruvCSSaWotWqBU81JwoMEURKqhgxLW1tV-pW2dZxJwl41XWtb512TDGtmTfcO6Idv0RfD7lzDL9XSEsz9snBMNgJwpoaqjQV-XH5Niop44yWgryNipIpLfIJGf3yH_oU1jjlm3MgEVJIQ0ym6IFyMaQUwTdz7EcbnxtKmn3Jzb7kZl9ycyw5ez4fk9d2hO7V8dJqBj4dgB4AXmWltNHM8L80LKl9</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Xu, Ren</creator><creator>Jiang, Ning</creator><creator>Lin, Chuang</creator><creator>Mrachacz-Kersting, Natalie</creator><creator>Dremstrup, Kim</creator><creator>Farina, Dario</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201402</creationdate><title>Enhanced Low-Latency Detection of Motor Intention From EEG for Closed-Loop Brain-Computer Interface Applications</title><author>Xu, Ren ; Jiang, Ning ; Lin, Chuang ; Mrachacz-Kersting, Natalie ; Dremstrup, Kim ; Farina, Dario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-b76bef17306e80405516208b1bad97b6abc3c50ef6ddbfbc7c262772f83fc07c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Brain-computer interface</topic><topic>Brain-Computer Interfaces</topic><topic>Devices</topic><topic>Discriminant analysis</topic><topic>Educational institutions</topic><topic>Electrodes</topic><topic>electroencephalogram (EEG)</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Electromyography</topic><topic>Evoked Potentials, Motor - physiology</topic><topic>Human-computer interface</topic><topic>Humans</topic><topic>Locality Preserving Projection</topic><topic>Matched filters</topic><topic>motor intention</topic><topic>Motors</topic><topic>movement-related cortical potentials (MRCP)</topic><topic>On-line systems</topic><topic>Online</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Testing</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Ren</creatorcontrib><creatorcontrib>Jiang, Ning</creatorcontrib><creatorcontrib>Lin, Chuang</creatorcontrib><creatorcontrib>Mrachacz-Kersting, Natalie</creatorcontrib><creatorcontrib>Dremstrup, Kim</creatorcontrib><creatorcontrib>Farina, Dario</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Ren</au><au>Jiang, Ning</au><au>Lin, Chuang</au><au>Mrachacz-Kersting, Natalie</au><au>Dremstrup, Kim</au><au>Farina, Dario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Low-Latency Detection of Motor Intention From EEG for Closed-Loop Brain-Computer Interface Applications</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2014-02</date><risdate>2014</risdate><volume>61</volume><issue>2</issue><spage>288</spage><epage>296</epage><pages>288-296</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>In recent years, the detection of voluntary motor intentions from electroencephalogram (EEG) has been used for triggering external devices in closed-loop brain-computer interface (BCI) research. Movement-related cortical potentials (MRCP), a type of slow cortical potentials, have been recently used for detection. In order to enhance the efficacy of closed-loop BCI systems based on MRCPs, a manifold method called Locality Preserving Projection, followed by a linear discriminant analysis (LDA) classifier (LPP-LDA) is proposed in this paper to detect MRCPs from scalp EEG in real time. In an online experiment on nine healthy subjects, LPP-LDA statistically outperformed the classic matched filter approach with greater true positive rate (79 ± 11% versus 68 ± 10%; p = 0.007) and less false positives (1.4 ± 0.8/min versus 2.3 ± 1.1/min; p = 0.016). Moreover, the proposed system performed detections with significantly shorter latency (315 ± 165 ms versus 460 ± 123 ms; p = 0.013), which is a fundamental characteristics to induce neuroplastic changes in closed-loop BCIs, following the Hebbian principle. In conclusion, the proposed system works as a generic brain switch, with high accuracy, low latency, and easy online implementation. It can thus be used as a fundamental element of BCI systems for neuromodulation and motor function rehabilitation.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>24448593</pmid><doi>10.1109/TBME.2013.2294203</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9294
ispartof IEEE transactions on biomedical engineering, 2014-02, Vol.61 (2), p.288-296
issn 0018-9294
1558-2531
language eng
recordid cdi_proquest_miscellaneous_1492674524
source IEEE Xplore All Conference Series
subjects Accuracy
Brain-computer interface
Brain-Computer Interfaces
Devices
Discriminant analysis
Educational institutions
Electrodes
electroencephalogram (EEG)
Electroencephalography
Electroencephalography - methods
Electromyography
Evoked Potentials, Motor - physiology
Human-computer interface
Humans
Locality Preserving Projection
Matched filters
motor intention
Motors
movement-related cortical potentials (MRCP)
On-line systems
Online
Signal Processing, Computer-Assisted
Testing
Training
title Enhanced Low-Latency Detection of Motor Intention From EEG for Closed-Loop Brain-Computer Interface Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Low-Latency%20Detection%20of%20Motor%20Intention%20From%20EEG%20for%20Closed-Loop%20Brain-Computer%20Interface%20Applications&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Xu,%20Ren&rft.date=2014-02&rft.volume=61&rft.issue=2&rft.spage=288&rft.epage=296&rft.pages=288-296&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/TBME.2013.2294203&rft_dat=%3Cproquest_CHZPO%3E3237819751%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c524t-b76bef17306e80405516208b1bad97b6abc3c50ef6ddbfbc7c262772f83fc07c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1504545808&rft_id=info:pmid/24448593&rft_ieee_id=6678728&rfr_iscdi=true