Loading…

Low Core-Mantle Boundary Temperature Inferred from the Solidus of Pyrolite

The melting temperature of Earth's mantle provides key constraints on the thermal structures of both the mantle and the core. Through high-pressure experiments and three-dimensional x-ray microtomographic imaging, we showed that the solidus temperature of a primitive (pyrolitic) mantle is as lo...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2014-01, Vol.343 (6170), p.522-525
Main Authors: Nomura, Ryuichi, Hirose, Kei, Uesugi, Kentaro, Ohishi, Yasuo, Tsuchiyama, Akira, Miyake, Akira, Ueno, Yuichiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a480t-5c6b614ab75f256b6313b06f3793d03f85264dd387ce0be62cdf58315ab6f4533
cites cdi_FETCH-LOGICAL-a480t-5c6b614ab75f256b6313b06f3793d03f85264dd387ce0be62cdf58315ab6f4533
container_end_page 525
container_issue 6170
container_start_page 522
container_title Science (American Association for the Advancement of Science)
container_volume 343
creator Nomura, Ryuichi
Hirose, Kei
Uesugi, Kentaro
Ohishi, Yasuo
Tsuchiyama, Akira
Miyake, Akira
Ueno, Yuichiro
description The melting temperature of Earth's mantle provides key constraints on the thermal structures of both the mantle and the core. Through high-pressure experiments and three-dimensional x-ray microtomographic imaging, we showed that the solidus temperature of a primitive (pyrolitic) mantle is as low as 3570 ± 200 kelvin at pressures expected near the boundary between the mantle and the outer core. Because the lowermost mantle is not globally molten, this provides an upper bound of the temperature at the core-mantle boundary (TCMB). Such remarkably low TCMB implies that the post-perovskite phase is present in wide areas of the lowermost mantle. The low TCMB also requires that the melting temperature of the outer core is depressed largely by impurities such as hydrogen.
doi_str_mv 10.1126/science.1248186
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1493800637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24742866</jstor_id><sourcerecordid>24742866</sourcerecordid><originalsourceid>FETCH-LOGICAL-a480t-5c6b614ab75f256b6313b06f3793d03f85264dd387ce0be62cdf58315ab6f4533</originalsourceid><addsrcrecordid>eNpdkMtLw0AQhxdRbK2ePSkLXryk3Xc2Ry0-KhUF6znkMYspSbbuJkj_e7c0iniaGX7fDMOH0DklU0qZmvmigraAKWVCU60O0JiSREYJI_wQjQnhKtIkliN04v2akJAl_BiNmBBcUS3H6Glpv_DcOoies7arAd_avi0zt8UraDbgsq53gBetAeegxMbZBncfgN9sXZW9x9bg160LQwen6MhktYezoU7Q-_3dav4YLV8eFvObZZQJTbpIFipXVGR5LA2ToeeU50QZHie8JNxoyZQoS67jAkgOihWlkZpTmeXKCMn5BF3v726c_ezBd2lT-QLqOmvB9j6lIuGaEMXjgF79Q9e2d234bkexhCYiOJqg2Z4qnPXegUk3rmqCg5SSdKc5HTSng-awcTnc7fMGyl_-x2sALvbA2nfW_cljwbRS_BvBDoHU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492919400</pqid></control><display><type>article</type><title>Low Core-Mantle Boundary Temperature Inferred from the Solidus of Pyrolite</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Alma/SFX Local Collection</source><creator>Nomura, Ryuichi ; Hirose, Kei ; Uesugi, Kentaro ; Ohishi, Yasuo ; Tsuchiyama, Akira ; Miyake, Akira ; Ueno, Yuichiro</creator><creatorcontrib>Nomura, Ryuichi ; Hirose, Kei ; Uesugi, Kentaro ; Ohishi, Yasuo ; Tsuchiyama, Akira ; Miyake, Akira ; Ueno, Yuichiro</creatorcontrib><description>The melting temperature of Earth's mantle provides key constraints on the thermal structures of both the mantle and the core. Through high-pressure experiments and three-dimensional x-ray microtomographic imaging, we showed that the solidus temperature of a primitive (pyrolitic) mantle is as low as 3570 ± 200 kelvin at pressures expected near the boundary between the mantle and the outer core. Because the lowermost mantle is not globally molten, this provides an upper bound of the temperature at the core-mantle boundary (TCMB). Such remarkably low TCMB implies that the post-perovskite phase is present in wide areas of the lowermost mantle. The low TCMB also requires that the melting temperature of the outer core is depressed largely by impurities such as hydrogen.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1248186</identifier><identifier>PMID: 24436185</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Boundary layer ; Climate ; Continental dynamics ; Core mantle boundary ; Cosmic microwave background radiation ; Earth ; Earth science ; Liquidus ; Lower mantle ; Mantle ; Melting ; Outer cores ; Perovskites ; Solidus ; Temperature</subject><ispartof>Science (American Association for the Advancement of Science), 2014-01, Vol.343 (6170), p.522-525</ispartof><rights>Copyright © 2014 American Association for the Advancement of Science</rights><rights>Copyright © 2014, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a480t-5c6b614ab75f256b6313b06f3793d03f85264dd387ce0be62cdf58315ab6f4533</citedby><cites>FETCH-LOGICAL-a480t-5c6b614ab75f256b6313b06f3793d03f85264dd387ce0be62cdf58315ab6f4533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24742866$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24742866$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,2884,2885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24436185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nomura, Ryuichi</creatorcontrib><creatorcontrib>Hirose, Kei</creatorcontrib><creatorcontrib>Uesugi, Kentaro</creatorcontrib><creatorcontrib>Ohishi, Yasuo</creatorcontrib><creatorcontrib>Tsuchiyama, Akira</creatorcontrib><creatorcontrib>Miyake, Akira</creatorcontrib><creatorcontrib>Ueno, Yuichiro</creatorcontrib><title>Low Core-Mantle Boundary Temperature Inferred from the Solidus of Pyrolite</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The melting temperature of Earth's mantle provides key constraints on the thermal structures of both the mantle and the core. Through high-pressure experiments and three-dimensional x-ray microtomographic imaging, we showed that the solidus temperature of a primitive (pyrolitic) mantle is as low as 3570 ± 200 kelvin at pressures expected near the boundary between the mantle and the outer core. Because the lowermost mantle is not globally molten, this provides an upper bound of the temperature at the core-mantle boundary (TCMB). Such remarkably low TCMB implies that the post-perovskite phase is present in wide areas of the lowermost mantle. The low TCMB also requires that the melting temperature of the outer core is depressed largely by impurities such as hydrogen.</description><subject>Boundary layer</subject><subject>Climate</subject><subject>Continental dynamics</subject><subject>Core mantle boundary</subject><subject>Cosmic microwave background radiation</subject><subject>Earth</subject><subject>Earth science</subject><subject>Liquidus</subject><subject>Lower mantle</subject><subject>Mantle</subject><subject>Melting</subject><subject>Outer cores</subject><subject>Perovskites</subject><subject>Solidus</subject><subject>Temperature</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkMtLw0AQhxdRbK2ePSkLXryk3Xc2Ry0-KhUF6znkMYspSbbuJkj_e7c0iniaGX7fDMOH0DklU0qZmvmigraAKWVCU60O0JiSREYJI_wQjQnhKtIkliN04v2akJAl_BiNmBBcUS3H6Glpv_DcOoies7arAd_avi0zt8UraDbgsq53gBetAeegxMbZBncfgN9sXZW9x9bg160LQwen6MhktYezoU7Q-_3dav4YLV8eFvObZZQJTbpIFipXVGR5LA2ToeeU50QZHie8JNxoyZQoS67jAkgOihWlkZpTmeXKCMn5BF3v726c_ezBd2lT-QLqOmvB9j6lIuGaEMXjgF79Q9e2d234bkexhCYiOJqg2Z4qnPXegUk3rmqCg5SSdKc5HTSng-awcTnc7fMGyl_-x2sALvbA2nfW_cljwbRS_BvBDoHU</recordid><startdate>20140131</startdate><enddate>20140131</enddate><creator>Nomura, Ryuichi</creator><creator>Hirose, Kei</creator><creator>Uesugi, Kentaro</creator><creator>Ohishi, Yasuo</creator><creator>Tsuchiyama, Akira</creator><creator>Miyake, Akira</creator><creator>Ueno, Yuichiro</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20140131</creationdate><title>Low Core-Mantle Boundary Temperature Inferred from the Solidus of Pyrolite</title><author>Nomura, Ryuichi ; Hirose, Kei ; Uesugi, Kentaro ; Ohishi, Yasuo ; Tsuchiyama, Akira ; Miyake, Akira ; Ueno, Yuichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a480t-5c6b614ab75f256b6313b06f3793d03f85264dd387ce0be62cdf58315ab6f4533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Boundary layer</topic><topic>Climate</topic><topic>Continental dynamics</topic><topic>Core mantle boundary</topic><topic>Cosmic microwave background radiation</topic><topic>Earth</topic><topic>Earth science</topic><topic>Liquidus</topic><topic>Lower mantle</topic><topic>Mantle</topic><topic>Melting</topic><topic>Outer cores</topic><topic>Perovskites</topic><topic>Solidus</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nomura, Ryuichi</creatorcontrib><creatorcontrib>Hirose, Kei</creatorcontrib><creatorcontrib>Uesugi, Kentaro</creatorcontrib><creatorcontrib>Ohishi, Yasuo</creatorcontrib><creatorcontrib>Tsuchiyama, Akira</creatorcontrib><creatorcontrib>Miyake, Akira</creatorcontrib><creatorcontrib>Ueno, Yuichiro</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nomura, Ryuichi</au><au>Hirose, Kei</au><au>Uesugi, Kentaro</au><au>Ohishi, Yasuo</au><au>Tsuchiyama, Akira</au><au>Miyake, Akira</au><au>Ueno, Yuichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Core-Mantle Boundary Temperature Inferred from the Solidus of Pyrolite</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2014-01-31</date><risdate>2014</risdate><volume>343</volume><issue>6170</issue><spage>522</spage><epage>525</epage><pages>522-525</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The melting temperature of Earth's mantle provides key constraints on the thermal structures of both the mantle and the core. Through high-pressure experiments and three-dimensional x-ray microtomographic imaging, we showed that the solidus temperature of a primitive (pyrolitic) mantle is as low as 3570 ± 200 kelvin at pressures expected near the boundary between the mantle and the outer core. Because the lowermost mantle is not globally molten, this provides an upper bound of the temperature at the core-mantle boundary (TCMB). Such remarkably low TCMB implies that the post-perovskite phase is present in wide areas of the lowermost mantle. The low TCMB also requires that the melting temperature of the outer core is depressed largely by impurities such as hydrogen.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>24436185</pmid><doi>10.1126/science.1248186</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2014-01, Vol.343 (6170), p.522-525
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1493800637
source American Association for the Advancement of Science; JSTOR Archival Journals and Primary Sources Collection; Alma/SFX Local Collection
subjects Boundary layer
Climate
Continental dynamics
Core mantle boundary
Cosmic microwave background radiation
Earth
Earth science
Liquidus
Lower mantle
Mantle
Melting
Outer cores
Perovskites
Solidus
Temperature
title Low Core-Mantle Boundary Temperature Inferred from the Solidus of Pyrolite
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A42%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Core-Mantle%20Boundary%20Temperature%20Inferred%20from%20the%20Solidus%20of%20Pyrolite&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Nomura,%20Ryuichi&rft.date=2014-01-31&rft.volume=343&rft.issue=6170&rft.spage=522&rft.epage=525&rft.pages=522-525&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1248186&rft_dat=%3Cjstor_proqu%3E24742866%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a480t-5c6b614ab75f256b6313b06f3793d03f85264dd387ce0be62cdf58315ab6f4533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1492919400&rft_id=info:pmid/24436185&rft_jstor_id=24742866&rfr_iscdi=true