Loading…
Low Core-Mantle Boundary Temperature Inferred from the Solidus of Pyrolite
The melting temperature of Earth's mantle provides key constraints on the thermal structures of both the mantle and the core. Through high-pressure experiments and three-dimensional x-ray microtomographic imaging, we showed that the solidus temperature of a primitive (pyrolitic) mantle is as lo...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2014-01, Vol.343 (6170), p.522-525 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a480t-5c6b614ab75f256b6313b06f3793d03f85264dd387ce0be62cdf58315ab6f4533 |
---|---|
cites | cdi_FETCH-LOGICAL-a480t-5c6b614ab75f256b6313b06f3793d03f85264dd387ce0be62cdf58315ab6f4533 |
container_end_page | 525 |
container_issue | 6170 |
container_start_page | 522 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 343 |
creator | Nomura, Ryuichi Hirose, Kei Uesugi, Kentaro Ohishi, Yasuo Tsuchiyama, Akira Miyake, Akira Ueno, Yuichiro |
description | The melting temperature of Earth's mantle provides key constraints on the thermal structures of both the mantle and the core. Through high-pressure experiments and three-dimensional x-ray microtomographic imaging, we showed that the solidus temperature of a primitive (pyrolitic) mantle is as low as 3570 ± 200 kelvin at pressures expected near the boundary between the mantle and the outer core. Because the lowermost mantle is not globally molten, this provides an upper bound of the temperature at the core-mantle boundary (TCMB). Such remarkably low TCMB implies that the post-perovskite phase is present in wide areas of the lowermost mantle. The low TCMB also requires that the melting temperature of the outer core is depressed largely by impurities such as hydrogen. |
doi_str_mv | 10.1126/science.1248186 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1493800637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24742866</jstor_id><sourcerecordid>24742866</sourcerecordid><originalsourceid>FETCH-LOGICAL-a480t-5c6b614ab75f256b6313b06f3793d03f85264dd387ce0be62cdf58315ab6f4533</originalsourceid><addsrcrecordid>eNpdkMtLw0AQhxdRbK2ePSkLXryk3Xc2Ry0-KhUF6znkMYspSbbuJkj_e7c0iniaGX7fDMOH0DklU0qZmvmigraAKWVCU60O0JiSREYJI_wQjQnhKtIkliN04v2akJAl_BiNmBBcUS3H6Glpv_DcOoies7arAd_avi0zt8UraDbgsq53gBetAeegxMbZBncfgN9sXZW9x9bg160LQwen6MhktYezoU7Q-_3dav4YLV8eFvObZZQJTbpIFipXVGR5LA2ToeeU50QZHie8JNxoyZQoS67jAkgOihWlkZpTmeXKCMn5BF3v726c_ezBd2lT-QLqOmvB9j6lIuGaEMXjgF79Q9e2d234bkexhCYiOJqg2Z4qnPXegUk3rmqCg5SSdKc5HTSng-awcTnc7fMGyl_-x2sALvbA2nfW_cljwbRS_BvBDoHU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492919400</pqid></control><display><type>article</type><title>Low Core-Mantle Boundary Temperature Inferred from the Solidus of Pyrolite</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Alma/SFX Local Collection</source><creator>Nomura, Ryuichi ; Hirose, Kei ; Uesugi, Kentaro ; Ohishi, Yasuo ; Tsuchiyama, Akira ; Miyake, Akira ; Ueno, Yuichiro</creator><creatorcontrib>Nomura, Ryuichi ; Hirose, Kei ; Uesugi, Kentaro ; Ohishi, Yasuo ; Tsuchiyama, Akira ; Miyake, Akira ; Ueno, Yuichiro</creatorcontrib><description>The melting temperature of Earth's mantle provides key constraints on the thermal structures of both the mantle and the core. Through high-pressure experiments and three-dimensional x-ray microtomographic imaging, we showed that the solidus temperature of a primitive (pyrolitic) mantle is as low as 3570 ± 200 kelvin at pressures expected near the boundary between the mantle and the outer core. Because the lowermost mantle is not globally molten, this provides an upper bound of the temperature at the core-mantle boundary (TCMB). Such remarkably low TCMB implies that the post-perovskite phase is present in wide areas of the lowermost mantle. The low TCMB also requires that the melting temperature of the outer core is depressed largely by impurities such as hydrogen.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1248186</identifier><identifier>PMID: 24436185</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Boundary layer ; Climate ; Continental dynamics ; Core mantle boundary ; Cosmic microwave background radiation ; Earth ; Earth science ; Liquidus ; Lower mantle ; Mantle ; Melting ; Outer cores ; Perovskites ; Solidus ; Temperature</subject><ispartof>Science (American Association for the Advancement of Science), 2014-01, Vol.343 (6170), p.522-525</ispartof><rights>Copyright © 2014 American Association for the Advancement of Science</rights><rights>Copyright © 2014, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a480t-5c6b614ab75f256b6313b06f3793d03f85264dd387ce0be62cdf58315ab6f4533</citedby><cites>FETCH-LOGICAL-a480t-5c6b614ab75f256b6313b06f3793d03f85264dd387ce0be62cdf58315ab6f4533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24742866$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24742866$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,2884,2885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24436185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nomura, Ryuichi</creatorcontrib><creatorcontrib>Hirose, Kei</creatorcontrib><creatorcontrib>Uesugi, Kentaro</creatorcontrib><creatorcontrib>Ohishi, Yasuo</creatorcontrib><creatorcontrib>Tsuchiyama, Akira</creatorcontrib><creatorcontrib>Miyake, Akira</creatorcontrib><creatorcontrib>Ueno, Yuichiro</creatorcontrib><title>Low Core-Mantle Boundary Temperature Inferred from the Solidus of Pyrolite</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The melting temperature of Earth's mantle provides key constraints on the thermal structures of both the mantle and the core. Through high-pressure experiments and three-dimensional x-ray microtomographic imaging, we showed that the solidus temperature of a primitive (pyrolitic) mantle is as low as 3570 ± 200 kelvin at pressures expected near the boundary between the mantle and the outer core. Because the lowermost mantle is not globally molten, this provides an upper bound of the temperature at the core-mantle boundary (TCMB). Such remarkably low TCMB implies that the post-perovskite phase is present in wide areas of the lowermost mantle. The low TCMB also requires that the melting temperature of the outer core is depressed largely by impurities such as hydrogen.</description><subject>Boundary layer</subject><subject>Climate</subject><subject>Continental dynamics</subject><subject>Core mantle boundary</subject><subject>Cosmic microwave background radiation</subject><subject>Earth</subject><subject>Earth science</subject><subject>Liquidus</subject><subject>Lower mantle</subject><subject>Mantle</subject><subject>Melting</subject><subject>Outer cores</subject><subject>Perovskites</subject><subject>Solidus</subject><subject>Temperature</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkMtLw0AQhxdRbK2ePSkLXryk3Xc2Ry0-KhUF6znkMYspSbbuJkj_e7c0iniaGX7fDMOH0DklU0qZmvmigraAKWVCU60O0JiSREYJI_wQjQnhKtIkliN04v2akJAl_BiNmBBcUS3H6Glpv_DcOoies7arAd_avi0zt8UraDbgsq53gBetAeegxMbZBncfgN9sXZW9x9bg160LQwen6MhktYezoU7Q-_3dav4YLV8eFvObZZQJTbpIFipXVGR5LA2ToeeU50QZHie8JNxoyZQoS67jAkgOihWlkZpTmeXKCMn5BF3v726c_ezBd2lT-QLqOmvB9j6lIuGaEMXjgF79Q9e2d234bkexhCYiOJqg2Z4qnPXegUk3rmqCg5SSdKc5HTSng-awcTnc7fMGyl_-x2sALvbA2nfW_cljwbRS_BvBDoHU</recordid><startdate>20140131</startdate><enddate>20140131</enddate><creator>Nomura, Ryuichi</creator><creator>Hirose, Kei</creator><creator>Uesugi, Kentaro</creator><creator>Ohishi, Yasuo</creator><creator>Tsuchiyama, Akira</creator><creator>Miyake, Akira</creator><creator>Ueno, Yuichiro</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20140131</creationdate><title>Low Core-Mantle Boundary Temperature Inferred from the Solidus of Pyrolite</title><author>Nomura, Ryuichi ; Hirose, Kei ; Uesugi, Kentaro ; Ohishi, Yasuo ; Tsuchiyama, Akira ; Miyake, Akira ; Ueno, Yuichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a480t-5c6b614ab75f256b6313b06f3793d03f85264dd387ce0be62cdf58315ab6f4533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Boundary layer</topic><topic>Climate</topic><topic>Continental dynamics</topic><topic>Core mantle boundary</topic><topic>Cosmic microwave background radiation</topic><topic>Earth</topic><topic>Earth science</topic><topic>Liquidus</topic><topic>Lower mantle</topic><topic>Mantle</topic><topic>Melting</topic><topic>Outer cores</topic><topic>Perovskites</topic><topic>Solidus</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nomura, Ryuichi</creatorcontrib><creatorcontrib>Hirose, Kei</creatorcontrib><creatorcontrib>Uesugi, Kentaro</creatorcontrib><creatorcontrib>Ohishi, Yasuo</creatorcontrib><creatorcontrib>Tsuchiyama, Akira</creatorcontrib><creatorcontrib>Miyake, Akira</creatorcontrib><creatorcontrib>Ueno, Yuichiro</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nomura, Ryuichi</au><au>Hirose, Kei</au><au>Uesugi, Kentaro</au><au>Ohishi, Yasuo</au><au>Tsuchiyama, Akira</au><au>Miyake, Akira</au><au>Ueno, Yuichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Core-Mantle Boundary Temperature Inferred from the Solidus of Pyrolite</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2014-01-31</date><risdate>2014</risdate><volume>343</volume><issue>6170</issue><spage>522</spage><epage>525</epage><pages>522-525</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The melting temperature of Earth's mantle provides key constraints on the thermal structures of both the mantle and the core. Through high-pressure experiments and three-dimensional x-ray microtomographic imaging, we showed that the solidus temperature of a primitive (pyrolitic) mantle is as low as 3570 ± 200 kelvin at pressures expected near the boundary between the mantle and the outer core. Because the lowermost mantle is not globally molten, this provides an upper bound of the temperature at the core-mantle boundary (TCMB). Such remarkably low TCMB implies that the post-perovskite phase is present in wide areas of the lowermost mantle. The low TCMB also requires that the melting temperature of the outer core is depressed largely by impurities such as hydrogen.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>24436185</pmid><doi>10.1126/science.1248186</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2014-01, Vol.343 (6170), p.522-525 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_1493800637 |
source | American Association for the Advancement of Science; JSTOR Archival Journals and Primary Sources Collection; Alma/SFX Local Collection |
subjects | Boundary layer Climate Continental dynamics Core mantle boundary Cosmic microwave background radiation Earth Earth science Liquidus Lower mantle Mantle Melting Outer cores Perovskites Solidus Temperature |
title | Low Core-Mantle Boundary Temperature Inferred from the Solidus of Pyrolite |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A42%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Core-Mantle%20Boundary%20Temperature%20Inferred%20from%20the%20Solidus%20of%20Pyrolite&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Nomura,%20Ryuichi&rft.date=2014-01-31&rft.volume=343&rft.issue=6170&rft.spage=522&rft.epage=525&rft.pages=522-525&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1248186&rft_dat=%3Cjstor_proqu%3E24742866%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a480t-5c6b614ab75f256b6313b06f3793d03f85264dd387ce0be62cdf58315ab6f4533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1492919400&rft_id=info:pmid/24436185&rft_jstor_id=24742866&rfr_iscdi=true |