Loading…

Single-Molecule Tracking of Polymer Surface Diffusion

The dynamics of polymers adsorbed to a solid surface are important in thin-film formation, adhesion phenomena, and biosensing applications, but they are still poorly understood. Here we present tracking data that follow the dynamics of isolated poly­(ethylene glycol) chains adsorbed at a hydrophobic...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2014-01, Vol.136 (4), p.1327-1332
Main Authors: Skaug, Michael J, Mabry, Joshua N, Schwartz, Daniel K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a315t-7b2a1ddbd02cc47bfcaf12839ee513d24eda83695d492141fb56b33dba8092ac3
cites cdi_FETCH-LOGICAL-a315t-7b2a1ddbd02cc47bfcaf12839ee513d24eda83695d492141fb56b33dba8092ac3
container_end_page 1332
container_issue 4
container_start_page 1327
container_title Journal of the American Chemical Society
container_volume 136
creator Skaug, Michael J
Mabry, Joshua N
Schwartz, Daniel K
description The dynamics of polymers adsorbed to a solid surface are important in thin-film formation, adhesion phenomena, and biosensing applications, but they are still poorly understood. Here we present tracking data that follow the dynamics of isolated poly­(ethylene glycol) chains adsorbed at a hydrophobic solid–liquid interface. We found that molecules moved on the surface via a continuous-time random walk mechanism, where periods of immobilization were punctuated by desorption-mediated jumps. The dependence of the surface mobility on molecular weight (2, 5, 10, 20, and 40 kg/mol were investigated) suggested that surface-adsorbed polymers maintained effectively three-dimensional surface conformations. These results indicate that polymer surface diffusion, rather than occurring in the two dimensions of the interface, is dominated by a three-dimensional mechanism that leads to large surface displacements and significant bulk–surface coupling.
doi_str_mv 10.1021/ja407396v
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1493801965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1493801965</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-7b2a1ddbd02cc47bfcaf12839ee513d24eda83695d492141fb56b33dba8092ac3</originalsourceid><addsrcrecordid>eNptkMtKw0AUQAdRbK0u_AHJRtBFdO68kiylPqGi0LoeJvOQ1EmmzjRC_95ItStXl3s5HLgHoVPAV4AJXC8VwwWtxNceGgMnOOdAxD4aY4xJXpSCjtBRSsthZaSEQzQijAgheDFGfN50797mz8Fb3XubLaLSH8MtCy57DX7T2pjN--iUttlt41yfmtAdowOnfLInv3OC3u7vFtPHfPby8DS9meWKAl_nRU0UGFMbTLRmRe20ckBKWlnLgRrCrFElFRU3rCLAwNVc1JSaWpW4IkrTCbrYelcxfPY2rWXbJG29V50NfZLAKlpiqAQf0MstqmNIKVonV7FpVdxIwPKnktxVGtizX21ft9bsyL8sA3C-BZROchn62A1f_iP6Bqk6bWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1493801965</pqid></control><display><type>article</type><title>Single-Molecule Tracking of Polymer Surface Diffusion</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Skaug, Michael J ; Mabry, Joshua N ; Schwartz, Daniel K</creator><creatorcontrib>Skaug, Michael J ; Mabry, Joshua N ; Schwartz, Daniel K</creatorcontrib><description>The dynamics of polymers adsorbed to a solid surface are important in thin-film formation, adhesion phenomena, and biosensing applications, but they are still poorly understood. Here we present tracking data that follow the dynamics of isolated poly­(ethylene glycol) chains adsorbed at a hydrophobic solid–liquid interface. We found that molecules moved on the surface via a continuous-time random walk mechanism, where periods of immobilization were punctuated by desorption-mediated jumps. The dependence of the surface mobility on molecular weight (2, 5, 10, 20, and 40 kg/mol were investigated) suggested that surface-adsorbed polymers maintained effectively three-dimensional surface conformations. These results indicate that polymer surface diffusion, rather than occurring in the two dimensions of the interface, is dominated by a three-dimensional mechanism that leads to large surface displacements and significant bulk–surface coupling.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja407396v</identifier><identifier>PMID: 24266657</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adsorption ; Diffusion ; Kinetics ; Polyethylene Glycols - chemistry ; Surface Properties ; Thermodynamics</subject><ispartof>Journal of the American Chemical Society, 2014-01, Vol.136 (4), p.1327-1332</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-7b2a1ddbd02cc47bfcaf12839ee513d24eda83695d492141fb56b33dba8092ac3</citedby><cites>FETCH-LOGICAL-a315t-7b2a1ddbd02cc47bfcaf12839ee513d24eda83695d492141fb56b33dba8092ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24266657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Skaug, Michael J</creatorcontrib><creatorcontrib>Mabry, Joshua N</creatorcontrib><creatorcontrib>Schwartz, Daniel K</creatorcontrib><title>Single-Molecule Tracking of Polymer Surface Diffusion</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The dynamics of polymers adsorbed to a solid surface are important in thin-film formation, adhesion phenomena, and biosensing applications, but they are still poorly understood. Here we present tracking data that follow the dynamics of isolated poly­(ethylene glycol) chains adsorbed at a hydrophobic solid–liquid interface. We found that molecules moved on the surface via a continuous-time random walk mechanism, where periods of immobilization were punctuated by desorption-mediated jumps. The dependence of the surface mobility on molecular weight (2, 5, 10, 20, and 40 kg/mol were investigated) suggested that surface-adsorbed polymers maintained effectively three-dimensional surface conformations. These results indicate that polymer surface diffusion, rather than occurring in the two dimensions of the interface, is dominated by a three-dimensional mechanism that leads to large surface displacements and significant bulk–surface coupling.</description><subject>Adsorption</subject><subject>Diffusion</subject><subject>Kinetics</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Surface Properties</subject><subject>Thermodynamics</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkMtKw0AUQAdRbK0u_AHJRtBFdO68kiylPqGi0LoeJvOQ1EmmzjRC_95ItStXl3s5HLgHoVPAV4AJXC8VwwWtxNceGgMnOOdAxD4aY4xJXpSCjtBRSsthZaSEQzQijAgheDFGfN50797mz8Fb3XubLaLSH8MtCy57DX7T2pjN--iUttlt41yfmtAdowOnfLInv3OC3u7vFtPHfPby8DS9meWKAl_nRU0UGFMbTLRmRe20ckBKWlnLgRrCrFElFRU3rCLAwNVc1JSaWpW4IkrTCbrYelcxfPY2rWXbJG29V50NfZLAKlpiqAQf0MstqmNIKVonV7FpVdxIwPKnktxVGtizX21ft9bsyL8sA3C-BZROchn62A1f_iP6Bqk6bWA</recordid><startdate>20140129</startdate><enddate>20140129</enddate><creator>Skaug, Michael J</creator><creator>Mabry, Joshua N</creator><creator>Schwartz, Daniel K</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140129</creationdate><title>Single-Molecule Tracking of Polymer Surface Diffusion</title><author>Skaug, Michael J ; Mabry, Joshua N ; Schwartz, Daniel K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-7b2a1ddbd02cc47bfcaf12839ee513d24eda83695d492141fb56b33dba8092ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adsorption</topic><topic>Diffusion</topic><topic>Kinetics</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Surface Properties</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skaug, Michael J</creatorcontrib><creatorcontrib>Mabry, Joshua N</creatorcontrib><creatorcontrib>Schwartz, Daniel K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skaug, Michael J</au><au>Mabry, Joshua N</au><au>Schwartz, Daniel K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Molecule Tracking of Polymer Surface Diffusion</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2014-01-29</date><risdate>2014</risdate><volume>136</volume><issue>4</issue><spage>1327</spage><epage>1332</epage><pages>1327-1332</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The dynamics of polymers adsorbed to a solid surface are important in thin-film formation, adhesion phenomena, and biosensing applications, but they are still poorly understood. Here we present tracking data that follow the dynamics of isolated poly­(ethylene glycol) chains adsorbed at a hydrophobic solid–liquid interface. We found that molecules moved on the surface via a continuous-time random walk mechanism, where periods of immobilization were punctuated by desorption-mediated jumps. The dependence of the surface mobility on molecular weight (2, 5, 10, 20, and 40 kg/mol were investigated) suggested that surface-adsorbed polymers maintained effectively three-dimensional surface conformations. These results indicate that polymer surface diffusion, rather than occurring in the two dimensions of the interface, is dominated by a three-dimensional mechanism that leads to large surface displacements and significant bulk–surface coupling.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24266657</pmid><doi>10.1021/ja407396v</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2014-01, Vol.136 (4), p.1327-1332
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1493801965
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Adsorption
Diffusion
Kinetics
Polyethylene Glycols - chemistry
Surface Properties
Thermodynamics
title Single-Molecule Tracking of Polymer Surface Diffusion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Molecule%20Tracking%20of%20Polymer%20Surface%20Diffusion&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Skaug,%20Michael%20J&rft.date=2014-01-29&rft.volume=136&rft.issue=4&rft.spage=1327&rft.epage=1332&rft.pages=1327-1332&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja407396v&rft_dat=%3Cproquest_cross%3E1493801965%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a315t-7b2a1ddbd02cc47bfcaf12839ee513d24eda83695d492141fb56b33dba8092ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1493801965&rft_id=info:pmid/24266657&rfr_iscdi=true