Loading…

Control of feeding movements in the freshwater snail Planorbis corneus. I: Rhythmical neurons of buccal ganglia

(1) The buccal mass of the freshwater snail Planorbis corneus, dissected together with the buccal ganglia, performs rhythmic feeding movements. Radula movements and the electrical activity in various nerves of buccal ganglia were recorded in such a preparation. The cycle of radula movements consiste...

Full description

Saved in:
Bibliographic Details
Published in:Experimental brain research 1988, Vol.70 (2), p.310-322
Main Authors: ARSHAVSKY, YU. I, DELIAGINA, T. G, MEIZEROV, E. S, ORLOVSKY, G. N, PANCHIN, YU. V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:(1) The buccal mass of the freshwater snail Planorbis corneus, dissected together with the buccal ganglia, performs rhythmic feeding movements. Radula movements and the electrical activity in various nerves of buccal ganglia were recorded in such a preparation. The cycle of radula movements consisted of three phases: quiescence (Q), protraction (P) and retraction (R). The activity in the radular nerve was observed mainly in the P-phase and that in the dorsobuccal nerve, largely in the R-phase. (2) Isolated buccal ganglia were capable of generating a feeding rhythm, the activity in buccal nerves being similar to that observed in the buccal mass-buccal ganglion preparation, i.e., a burst in the radular nerve preceded a burst in the dorsobuccal nerve. The activity of neurons in isolated buccal ganglia during generation of the feeding rhythm has been studied with intracellular microelectrodes. About 10% of ganglion neurons exhibited periodic activity related to the feeding rhythm ("rhythmic" neurons). (3) Rhythmic neurons have been divided into 7 groups according to the phase of their activity and to the characteristics of slow oscillations of the membrane potential during the feeding cycle. Group 1 neurons revealed a gradual increase of depolarization during the Q- and P-phases. In subgroup 1e neurons, spike discharges began in the Q-phase, while in subgroup 1d neurons activity started in the P-phase. During the R-phase, group 1 neurons were strongly hyperpolarized, and their discharges terminated. In group 2 neurons, small depolarization gradually increased during the Q- and P-phases. Then, in the R-phase, a large (20-50 mV) rectangular wave of depolarization arose with superimposed high-frequency oscillations. Group 3 neurons exhibited an excitatory postsynaptic potential (EPSP) in the P-phase and inhibitory postsynaptic potential (IPSP) in the R-phase. The neurons of group 4 revealed two EPSPs: a small one in the P-phase and a larger one in the R-phase. Group 5 neurons exhibited an EPSP in the P-phase, those of group 7 - an IPSP in the R-phase, and those of group 9 - IPSPs in the P- and R-phases. Neurons within each of the groups 1, 2 and 4 were electrically coupled, and in addition, there were also electrical connections between neurons of groups 2 and 4. (4) Data are presented showing that neurons of groups 1 and 2 are the main source of postsynaptic potentials in rhythmic neurons in the P-phase and in the R-phase of the cycle, respectively.
ISSN:0014-4819
1432-1106
DOI:10.1007/BF00248356