Loading…

constitutively active form of a durum wheat Na⁺/H ⁺ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis

KEY MESSAGE : Expression of a truncated form of wheat TdSOS1 in Arabidopsis exhibited an improved salt tolerance. This finding provides new hints about this protein that can be considered as a salt tolerance determinant. The SOS signaling pathway has emerged as a key mechanism in preserving the home...

Full description

Saved in:
Bibliographic Details
Published in:Plant cell reports 2014-02, Vol.33 (2), p.277-288
Main Authors: Feki, Kaouthar, Quintero, Francisco J, Khoudi, Habib, Leidi, Eduardo O, Masmoudi, Khaled, Pardo, Jose M, Brini, Faiçal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c501t-632f66b8aae18ffb5ad1f3dd387603c1b1d7e19f88c21bdbc1bbce68ae90d013
cites cdi_FETCH-LOGICAL-c501t-632f66b8aae18ffb5ad1f3dd387603c1b1d7e19f88c21bdbc1bbce68ae90d013
container_end_page 288
container_issue 2
container_start_page 277
container_title Plant cell reports
container_volume 33
creator Feki, Kaouthar
Quintero, Francisco J
Khoudi, Habib
Leidi, Eduardo O
Masmoudi, Khaled
Pardo, Jose M
Brini, Faiçal
description KEY MESSAGE : Expression of a truncated form of wheat TdSOS1 in Arabidopsis exhibited an improved salt tolerance. This finding provides new hints about this protein that can be considered as a salt tolerance determinant. The SOS signaling pathway has emerged as a key mechanism in preserving the homeostasis of Na⁺ and K⁺ under saline conditions. We have recently identified and functionally characterized, by complementation studies in yeast, the gene encoding the durum wheat plasma membrane Na⁺/H⁺ antiporter (TdSOS1). To extend these functional studies to the whole plant level, we complemented Arabidopsis sos1-1 mutant with wild-type TdSOS1 or with the hyperactive form TdSOS1∆972 and compared them to the Arabidopsis AtSOS1 protein. The Arabidopsis sos1-1 mutant is hypersensitive to both Na⁺ and Li⁺ ions. Compared with sos1-1 mutant transformed with the empty binary vector, seeds from TdSOS1 or TdSOS1∆972 transgenic plants had better germination under salt stress and more robust seedling growth in agar plates as well as in nutritive solution containing Na⁺ or Li⁺ salts. The root elongation of TdSOS1∆972 transgenic lines was higher than that of Arabidopsis sos1-1 mutant transformed with TdSOS1 or with the endogenous AtSOS1 gene. Under salt stress, TdSOS1∆972 transgenic lines showed greater water retention capacity and retained low Na⁺ and high K⁺ in their shoots and roots. Our data showed that the hyperactive form TdSOS1∆972 conferred a significant ionic stress tolerance to Arabidopsis plants and suggest that selection of hyperactive alleles of the SOS1 transport protein may pave the way for obtaining salt-tolerant crops.
doi_str_mv 10.1007/s00299-013-1528-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1494304435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1494304435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-632f66b8aae18ffb5ad1f3dd387603c1b1d7e19f88c21bdbc1bbce68ae90d013</originalsourceid><addsrcrecordid>eNp9kcFuFSEYhYnR2Gv1AdwoSzdj_x-YGWbZNGpNGru4NXFHGAbupZkZrsDUdOHC1_JxfBK5meqyC-CE_zsn4UDIa4T3CNCeJQDWdRUgr7BmsuqekA0KzioG_NtTsoGWYdW2KE7Ii5RuAcqwbZ6TEyawBujEhvw0YU7Z5yX7OzveU22OgroQJxoc1XRY4jLRH3urM_2i__z6fXZJy071nP0hxGwj3V5vkZYcZ2Oie7_b06THTHMYbdSzsUXRXFTa2dkbeh5174dwSD69JM-cHpN99XCekpuPH24uLqur60-fL86vKlMD5qrhzDVNL7W2KJ3raz2g48PAZdsAN9jj0FrsnJSGYT_05aY3tpHadjCUdk7JuzX2EMP3xaasJp-MHUc927AkhaITHITgdUFxRU0MKUXr1CH6Scd7haCOpau1dFVi1bF01RXPm4f4pZ_s8N_xr-UCsBVIZTTvbFS3YYlzefGjqW9Xk9NB6V30SX3dsvKFAMAlE-2jBCtL8r94zqMq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1494304435</pqid></control><display><type>article</type><title>constitutively active form of a durum wheat Na⁺/H ⁺ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis</title><source>Springer Nature</source><creator>Feki, Kaouthar ; Quintero, Francisco J ; Khoudi, Habib ; Leidi, Eduardo O ; Masmoudi, Khaled ; Pardo, Jose M ; Brini, Faiçal</creator><creatorcontrib>Feki, Kaouthar ; Quintero, Francisco J ; Khoudi, Habib ; Leidi, Eduardo O ; Masmoudi, Khaled ; Pardo, Jose M ; Brini, Faiçal</creatorcontrib><description>KEY MESSAGE : Expression of a truncated form of wheat TdSOS1 in Arabidopsis exhibited an improved salt tolerance. This finding provides new hints about this protein that can be considered as a salt tolerance determinant. The SOS signaling pathway has emerged as a key mechanism in preserving the homeostasis of Na⁺ and K⁺ under saline conditions. We have recently identified and functionally characterized, by complementation studies in yeast, the gene encoding the durum wheat plasma membrane Na⁺/H⁺ antiporter (TdSOS1). To extend these functional studies to the whole plant level, we complemented Arabidopsis sos1-1 mutant with wild-type TdSOS1 or with the hyperactive form TdSOS1∆972 and compared them to the Arabidopsis AtSOS1 protein. The Arabidopsis sos1-1 mutant is hypersensitive to both Na⁺ and Li⁺ ions. Compared with sos1-1 mutant transformed with the empty binary vector, seeds from TdSOS1 or TdSOS1∆972 transgenic plants had better germination under salt stress and more robust seedling growth in agar plates as well as in nutritive solution containing Na⁺ or Li⁺ salts. The root elongation of TdSOS1∆972 transgenic lines was higher than that of Arabidopsis sos1-1 mutant transformed with TdSOS1 or with the endogenous AtSOS1 gene. Under salt stress, TdSOS1∆972 transgenic lines showed greater water retention capacity and retained low Na⁺ and high K⁺ in their shoots and roots. Our data showed that the hyperactive form TdSOS1∆972 conferred a significant ionic stress tolerance to Arabidopsis plants and suggest that selection of hyperactive alleles of the SOS1 transport protein may pave the way for obtaining salt-tolerant crops.</description><identifier>ISSN: 0721-7714</identifier><identifier>EISSN: 1432-203X</identifier><identifier>DOI: 10.1007/s00299-013-1528-9</identifier><identifier>PMID: 24150094</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Alleles ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - physiology ; Biological Transport ; Biomass ; Biomedical and Life Sciences ; Biotechnology ; Cell Biology ; Cell Membrane - metabolism ; crops ; durum wheat ; Gene Expression Regulation, Plant ; Germination ; Homeostasis ; ions ; Life Sciences ; lithium ; mutants ; Original Paper ; Phenotype ; Plant Biochemistry ; Plant Leaves - genetics ; Plant Leaves - physiology ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Roots - genetics ; Plant Roots - physiology ; Plant Sciences ; Plants, Genetically Modified ; plasma membrane ; potassium ; protons ; root growth ; roots ; salt stress ; Salt-Tolerance ; salts ; seedling growth ; Seedlings - genetics ; Seedlings - physiology ; seeds ; shoots ; sodium ; Sodium Chloride - metabolism ; Sodium-Hydrogen Exchangers - genetics ; Sodium-Hydrogen Exchangers - metabolism ; stress tolerance ; Transgenes ; transgenic plants ; transport proteins ; Triticum - genetics ; Water - analysis ; Water - metabolism ; water holding capacity ; yeasts</subject><ispartof>Plant cell reports, 2014-02, Vol.33 (2), p.277-288</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-632f66b8aae18ffb5ad1f3dd387603c1b1d7e19f88c21bdbc1bbce68ae90d013</citedby><cites>FETCH-LOGICAL-c501t-632f66b8aae18ffb5ad1f3dd387603c1b1d7e19f88c21bdbc1bbce68ae90d013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24150094$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feki, Kaouthar</creatorcontrib><creatorcontrib>Quintero, Francisco J</creatorcontrib><creatorcontrib>Khoudi, Habib</creatorcontrib><creatorcontrib>Leidi, Eduardo O</creatorcontrib><creatorcontrib>Masmoudi, Khaled</creatorcontrib><creatorcontrib>Pardo, Jose M</creatorcontrib><creatorcontrib>Brini, Faiçal</creatorcontrib><title>constitutively active form of a durum wheat Na⁺/H ⁺ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis</title><title>Plant cell reports</title><addtitle>Plant Cell Rep</addtitle><addtitle>Plant Cell Rep</addtitle><description>KEY MESSAGE : Expression of a truncated form of wheat TdSOS1 in Arabidopsis exhibited an improved salt tolerance. This finding provides new hints about this protein that can be considered as a salt tolerance determinant. The SOS signaling pathway has emerged as a key mechanism in preserving the homeostasis of Na⁺ and K⁺ under saline conditions. We have recently identified and functionally characterized, by complementation studies in yeast, the gene encoding the durum wheat plasma membrane Na⁺/H⁺ antiporter (TdSOS1). To extend these functional studies to the whole plant level, we complemented Arabidopsis sos1-1 mutant with wild-type TdSOS1 or with the hyperactive form TdSOS1∆972 and compared them to the Arabidopsis AtSOS1 protein. The Arabidopsis sos1-1 mutant is hypersensitive to both Na⁺ and Li⁺ ions. Compared with sos1-1 mutant transformed with the empty binary vector, seeds from TdSOS1 or TdSOS1∆972 transgenic plants had better germination under salt stress and more robust seedling growth in agar plates as well as in nutritive solution containing Na⁺ or Li⁺ salts. The root elongation of TdSOS1∆972 transgenic lines was higher than that of Arabidopsis sos1-1 mutant transformed with TdSOS1 or with the endogenous AtSOS1 gene. Under salt stress, TdSOS1∆972 transgenic lines showed greater water retention capacity and retained low Na⁺ and high K⁺ in their shoots and roots. Our data showed that the hyperactive form TdSOS1∆972 conferred a significant ionic stress tolerance to Arabidopsis plants and suggest that selection of hyperactive alleles of the SOS1 transport protein may pave the way for obtaining salt-tolerant crops.</description><subject>Alleles</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - physiology</subject><subject>Biological Transport</subject><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell Biology</subject><subject>Cell Membrane - metabolism</subject><subject>crops</subject><subject>durum wheat</subject><subject>Gene Expression Regulation, Plant</subject><subject>Germination</subject><subject>Homeostasis</subject><subject>ions</subject><subject>Life Sciences</subject><subject>lithium</subject><subject>mutants</subject><subject>Original Paper</subject><subject>Phenotype</subject><subject>Plant Biochemistry</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - physiology</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - physiology</subject><subject>Plant Sciences</subject><subject>Plants, Genetically Modified</subject><subject>plasma membrane</subject><subject>potassium</subject><subject>protons</subject><subject>root growth</subject><subject>roots</subject><subject>salt stress</subject><subject>Salt-Tolerance</subject><subject>salts</subject><subject>seedling growth</subject><subject>Seedlings - genetics</subject><subject>Seedlings - physiology</subject><subject>seeds</subject><subject>shoots</subject><subject>sodium</subject><subject>Sodium Chloride - metabolism</subject><subject>Sodium-Hydrogen Exchangers - genetics</subject><subject>Sodium-Hydrogen Exchangers - metabolism</subject><subject>stress tolerance</subject><subject>Transgenes</subject><subject>transgenic plants</subject><subject>transport proteins</subject><subject>Triticum - genetics</subject><subject>Water - analysis</subject><subject>Water - metabolism</subject><subject>water holding capacity</subject><subject>yeasts</subject><issn>0721-7714</issn><issn>1432-203X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kcFuFSEYhYnR2Gv1AdwoSzdj_x-YGWbZNGpNGru4NXFHGAbupZkZrsDUdOHC1_JxfBK5meqyC-CE_zsn4UDIa4T3CNCeJQDWdRUgr7BmsuqekA0KzioG_NtTsoGWYdW2KE7Ii5RuAcqwbZ6TEyawBujEhvw0YU7Z5yX7OzveU22OgroQJxoc1XRY4jLRH3urM_2i__z6fXZJy071nP0hxGwj3V5vkZYcZ2Oie7_b06THTHMYbdSzsUXRXFTa2dkbeh5174dwSD69JM-cHpN99XCekpuPH24uLqur60-fL86vKlMD5qrhzDVNL7W2KJ3raz2g48PAZdsAN9jj0FrsnJSGYT_05aY3tpHadjCUdk7JuzX2EMP3xaasJp-MHUc927AkhaITHITgdUFxRU0MKUXr1CH6Scd7haCOpau1dFVi1bF01RXPm4f4pZ_s8N_xr-UCsBVIZTTvbFS3YYlzefGjqW9Xk9NB6V30SX3dsvKFAMAlE-2jBCtL8r94zqMq</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Feki, Kaouthar</creator><creator>Quintero, Francisco J</creator><creator>Khoudi, Habib</creator><creator>Leidi, Eduardo O</creator><creator>Masmoudi, Khaled</creator><creator>Pardo, Jose M</creator><creator>Brini, Faiçal</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140201</creationdate><title>constitutively active form of a durum wheat Na⁺/H ⁺ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis</title><author>Feki, Kaouthar ; Quintero, Francisco J ; Khoudi, Habib ; Leidi, Eduardo O ; Masmoudi, Khaled ; Pardo, Jose M ; Brini, Faiçal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-632f66b8aae18ffb5ad1f3dd387603c1b1d7e19f88c21bdbc1bbce68ae90d013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alleles</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - physiology</topic><topic>Biological Transport</topic><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell Biology</topic><topic>Cell Membrane - metabolism</topic><topic>crops</topic><topic>durum wheat</topic><topic>Gene Expression Regulation, Plant</topic><topic>Germination</topic><topic>Homeostasis</topic><topic>ions</topic><topic>Life Sciences</topic><topic>lithium</topic><topic>mutants</topic><topic>Original Paper</topic><topic>Phenotype</topic><topic>Plant Biochemistry</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - physiology</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - physiology</topic><topic>Plant Sciences</topic><topic>Plants, Genetically Modified</topic><topic>plasma membrane</topic><topic>potassium</topic><topic>protons</topic><topic>root growth</topic><topic>roots</topic><topic>salt stress</topic><topic>Salt-Tolerance</topic><topic>salts</topic><topic>seedling growth</topic><topic>Seedlings - genetics</topic><topic>Seedlings - physiology</topic><topic>seeds</topic><topic>shoots</topic><topic>sodium</topic><topic>Sodium Chloride - metabolism</topic><topic>Sodium-Hydrogen Exchangers - genetics</topic><topic>Sodium-Hydrogen Exchangers - metabolism</topic><topic>stress tolerance</topic><topic>Transgenes</topic><topic>transgenic plants</topic><topic>transport proteins</topic><topic>Triticum - genetics</topic><topic>Water - analysis</topic><topic>Water - metabolism</topic><topic>water holding capacity</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feki, Kaouthar</creatorcontrib><creatorcontrib>Quintero, Francisco J</creatorcontrib><creatorcontrib>Khoudi, Habib</creatorcontrib><creatorcontrib>Leidi, Eduardo O</creatorcontrib><creatorcontrib>Masmoudi, Khaled</creatorcontrib><creatorcontrib>Pardo, Jose M</creatorcontrib><creatorcontrib>Brini, Faiçal</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant cell reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feki, Kaouthar</au><au>Quintero, Francisco J</au><au>Khoudi, Habib</au><au>Leidi, Eduardo O</au><au>Masmoudi, Khaled</au><au>Pardo, Jose M</au><au>Brini, Faiçal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>constitutively active form of a durum wheat Na⁺/H ⁺ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis</atitle><jtitle>Plant cell reports</jtitle><stitle>Plant Cell Rep</stitle><addtitle>Plant Cell Rep</addtitle><date>2014-02-01</date><risdate>2014</risdate><volume>33</volume><issue>2</issue><spage>277</spage><epage>288</epage><pages>277-288</pages><issn>0721-7714</issn><eissn>1432-203X</eissn><abstract>KEY MESSAGE : Expression of a truncated form of wheat TdSOS1 in Arabidopsis exhibited an improved salt tolerance. This finding provides new hints about this protein that can be considered as a salt tolerance determinant. The SOS signaling pathway has emerged as a key mechanism in preserving the homeostasis of Na⁺ and K⁺ under saline conditions. We have recently identified and functionally characterized, by complementation studies in yeast, the gene encoding the durum wheat plasma membrane Na⁺/H⁺ antiporter (TdSOS1). To extend these functional studies to the whole plant level, we complemented Arabidopsis sos1-1 mutant with wild-type TdSOS1 or with the hyperactive form TdSOS1∆972 and compared them to the Arabidopsis AtSOS1 protein. The Arabidopsis sos1-1 mutant is hypersensitive to both Na⁺ and Li⁺ ions. Compared with sos1-1 mutant transformed with the empty binary vector, seeds from TdSOS1 or TdSOS1∆972 transgenic plants had better germination under salt stress and more robust seedling growth in agar plates as well as in nutritive solution containing Na⁺ or Li⁺ salts. The root elongation of TdSOS1∆972 transgenic lines was higher than that of Arabidopsis sos1-1 mutant transformed with TdSOS1 or with the endogenous AtSOS1 gene. Under salt stress, TdSOS1∆972 transgenic lines showed greater water retention capacity and retained low Na⁺ and high K⁺ in their shoots and roots. Our data showed that the hyperactive form TdSOS1∆972 conferred a significant ionic stress tolerance to Arabidopsis plants and suggest that selection of hyperactive alleles of the SOS1 transport protein may pave the way for obtaining salt-tolerant crops.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>24150094</pmid><doi>10.1007/s00299-013-1528-9</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0721-7714
ispartof Plant cell reports, 2014-02, Vol.33 (2), p.277-288
issn 0721-7714
1432-203X
language eng
recordid cdi_proquest_miscellaneous_1494304435
source Springer Nature
subjects Alleles
Arabidopsis
Arabidopsis - genetics
Arabidopsis - physiology
Biological Transport
Biomass
Biomedical and Life Sciences
Biotechnology
Cell Biology
Cell Membrane - metabolism
crops
durum wheat
Gene Expression Regulation, Plant
Germination
Homeostasis
ions
Life Sciences
lithium
mutants
Original Paper
Phenotype
Plant Biochemistry
Plant Leaves - genetics
Plant Leaves - physiology
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Roots - genetics
Plant Roots - physiology
Plant Sciences
Plants, Genetically Modified
plasma membrane
potassium
protons
root growth
roots
salt stress
Salt-Tolerance
salts
seedling growth
Seedlings - genetics
Seedlings - physiology
seeds
shoots
sodium
Sodium Chloride - metabolism
Sodium-Hydrogen Exchangers - genetics
Sodium-Hydrogen Exchangers - metabolism
stress tolerance
Transgenes
transgenic plants
transport proteins
Triticum - genetics
Water - analysis
Water - metabolism
water holding capacity
yeasts
title constitutively active form of a durum wheat Na⁺/H ⁺ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A42%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=constitutively%20active%20form%20of%20a%20durum%20wheat%20Na%E2%81%BA/H%20%E2%81%BA%20antiporter%20SOS1%20confers%20high%20salt%20tolerance%20to%20transgenic%20Arabidopsis&rft.jtitle=Plant%20cell%20reports&rft.au=Feki,%20Kaouthar&rft.date=2014-02-01&rft.volume=33&rft.issue=2&rft.spage=277&rft.epage=288&rft.pages=277-288&rft.issn=0721-7714&rft.eissn=1432-203X&rft_id=info:doi/10.1007/s00299-013-1528-9&rft_dat=%3Cproquest_cross%3E1494304435%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c501t-632f66b8aae18ffb5ad1f3dd387603c1b1d7e19f88c21bdbc1bbce68ae90d013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1494304435&rft_id=info:pmid/24150094&rfr_iscdi=true