Loading…
Next-generation sequencing-based multi-gene mutation profiling of solid tumors using fine needle aspiration samples: promises and challenges for routine clinical diagnostics
Increasing use of fine needle aspiration for oncological diagnosis, while minimally invasive, poses a challenge for molecular testing by traditional sequencing platforms due to high sample requirements. The advent of affordable benchtop next-generation sequencing platforms such as the semiconductor-...
Saved in:
Published in: | Modern pathology 2014-02, Vol.27 (2), p.314-327 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Increasing use of fine needle aspiration for oncological diagnosis, while minimally invasive, poses a challenge for molecular testing by traditional sequencing platforms due to high sample requirements. The advent of affordable benchtop next-generation sequencing platforms such as the semiconductor-based Ion Personal Genome Machine (PGM) Sequencer has facilitated multi-gene mutational profiling using only nanograms of DNA. We describe successful next-generation sequencing-based testing of fine needle aspiration cytological specimens in a clinical laboratory setting. We selected 61 tumor specimens, obtained by fine needle aspiration, with known mutational status for clinically relevant genes; of these, 31 specimens yielded sufficient DNA for next-generation sequencing testing. Ten nanograms of DNA from each sample was tested for mutations in the hotspot regions of 46 cancer-related genes using a 318-chip on Ion PGM Sequencer. All tested samples underwent successful targeted sequencing of 46 genes. We showed 100% concordance of results between next-generation sequencing and conventional test platforms for all previously known point mutations that included BRAF, EGFR, KRAS, MET, NRAS, PIK3CA, RET and TP53, deletions of EGFR and wild-type calls. Furthermore, next-generation sequencing detected variants in 19 of the 31 (61%) patient samples that were not detected by traditional platforms, thus increasing the utility of mutation analysis; these variants involved the APC, ATM, CDKN2A, CTNNB1, FGFR2, FLT3, KDR, KIT, KRAS, MLH1, NRAS, PIK3CA, SMAD4, STK11 and TP53 genes. The results of this study show that next-generation sequencing-based mutational profiling can be performed on fine needle aspiration cytological smears and cell blocks. Next-generation sequencing can be performed with only nanograms of DNA and has better sensitivity than traditional sequencing platforms. Use of next-generation sequencing also enhances the power of fine needle aspiration by providing gene mutation results that can direct personalized cancer therapy. |
---|---|
ISSN: | 0893-3952 1530-0285 |
DOI: | 10.1038/modpathol.2013.122 |