Loading…

Energy-balanced sampling workload allocation in wireless sensor networks

The quality of a wireless sensor network application is often measured by the number of samples collected in a period of time. Examples include debris flow monitoring systems, flood warning system and so on. In many situations, the number of collected samples has to be larger than a specific bound i...

Full description

Saved in:
Bibliographic Details
Published in:Computers & mathematics with applications (1987) 2012-09, Vol.64 (5), p.1376-1389
Main Author: Chu, Edward T.-H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c381t-120a8d25246f1ce7acce8bc225a78044777ed62c6fedd4f38ecac3b0b523374b3
cites cdi_FETCH-LOGICAL-c381t-120a8d25246f1ce7acce8bc225a78044777ed62c6fedd4f38ecac3b0b523374b3
container_end_page 1389
container_issue 5
container_start_page 1376
container_title Computers & mathematics with applications (1987)
container_volume 64
creator Chu, Edward T.-H.
description The quality of a wireless sensor network application is often measured by the number of samples collected in a period of time. Examples include debris flow monitoring systems, flood warning system and so on. In many situations, the number of collected samples has to be larger than a specific bound in order to reconstruct the monitored phenomenon. Considering that the network transmission consumes most energy in a wireless sensor network, the paths to forward collected samples back to the gateway have to be carefully chosen to avoid dead nodes and therefore network disconnection. In this paper, we investigate an optimization problem of balancing the energy consumption among sensor nodes while ensuring quality constraints. We prove that this problem is NP-hard and present a distributed algorithm. Our experiment results show that our method outperforms existing algorithms in balancing energy consumption of sensor nodes.
doi_str_mv 10.1016/j.camwa.2012.03.083
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1494335172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089812211200288X</els_id><sourcerecordid>1494335172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-120a8d25246f1ce7acce8bc225a78044777ed62c6fedd4f38ecac3b0b523374b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwC1gysiQ8fyR2BwZUFYpUiQVmy3FeKhcnLnZKxb8nocxMbzn36d5DyC2FggKt7neFNd3RFAwoK4AXoPgZmVEleS6rSp2TGaiFyilj9JJcpbQDAMEZzMh61WPcfue18aa32GTJdHvv-m12DPHDB9NkxvtgzeBCn7k-O7qIHlPKEvYpxKzHYSLTNblojU9483fn5P1p9bZc55vX55fl4ya3XNFhrABGNaxkomqpRWmsRVVbxkojFQghpcSmYrZqsWlEyxVaY3kNdck4l6Lmc3J3-ruP4fOAadCdSxb9WB_DIWkqFoLzkko2ovyE2hhSitjqfXSdid-agp686Z3-9aYnbxq4Hr2NqYdTCscVXw6jTtbh5GZcbgfdBPdv_gflJnip</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1494335172</pqid></control><display><type>article</type><title>Energy-balanced sampling workload allocation in wireless sensor networks</title><source>ScienceDirect Freedom Collection</source><creator>Chu, Edward T.-H.</creator><creatorcontrib>Chu, Edward T.-H.</creatorcontrib><description>The quality of a wireless sensor network application is often measured by the number of samples collected in a period of time. Examples include debris flow monitoring systems, flood warning system and so on. In many situations, the number of collected samples has to be larger than a specific bound in order to reconstruct the monitored phenomenon. Considering that the network transmission consumes most energy in a wireless sensor network, the paths to forward collected samples back to the gateway have to be carefully chosen to avoid dead nodes and therefore network disconnection. In this paper, we investigate an optimization problem of balancing the energy consumption among sensor nodes while ensuring quality constraints. We prove that this problem is NP-hard and present a distributed algorithm. Our experiment results show that our method outperforms existing algorithms in balancing energy consumption of sensor nodes.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2012.03.083</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Data collection ; Embedded systems ; Energy aware systems ; Sampling rate allocation ; Wireless sensor networks</subject><ispartof>Computers &amp; mathematics with applications (1987), 2012-09, Vol.64 (5), p.1376-1389</ispartof><rights>2012 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-120a8d25246f1ce7acce8bc225a78044777ed62c6fedd4f38ecac3b0b523374b3</citedby><cites>FETCH-LOGICAL-c381t-120a8d25246f1ce7acce8bc225a78044777ed62c6fedd4f38ecac3b0b523374b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Chu, Edward T.-H.</creatorcontrib><title>Energy-balanced sampling workload allocation in wireless sensor networks</title><title>Computers &amp; mathematics with applications (1987)</title><description>The quality of a wireless sensor network application is often measured by the number of samples collected in a period of time. Examples include debris flow monitoring systems, flood warning system and so on. In many situations, the number of collected samples has to be larger than a specific bound in order to reconstruct the monitored phenomenon. Considering that the network transmission consumes most energy in a wireless sensor network, the paths to forward collected samples back to the gateway have to be carefully chosen to avoid dead nodes and therefore network disconnection. In this paper, we investigate an optimization problem of balancing the energy consumption among sensor nodes while ensuring quality constraints. We prove that this problem is NP-hard and present a distributed algorithm. Our experiment results show that our method outperforms existing algorithms in balancing energy consumption of sensor nodes.</description><subject>Algorithms</subject><subject>Data collection</subject><subject>Embedded systems</subject><subject>Energy aware systems</subject><subject>Sampling rate allocation</subject><subject>Wireless sensor networks</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwC1gysiQ8fyR2BwZUFYpUiQVmy3FeKhcnLnZKxb8nocxMbzn36d5DyC2FggKt7neFNd3RFAwoK4AXoPgZmVEleS6rSp2TGaiFyilj9JJcpbQDAMEZzMh61WPcfue18aa32GTJdHvv-m12DPHDB9NkxvtgzeBCn7k-O7qIHlPKEvYpxKzHYSLTNblojU9483fn5P1p9bZc55vX55fl4ya3XNFhrABGNaxkomqpRWmsRVVbxkojFQghpcSmYrZqsWlEyxVaY3kNdck4l6Lmc3J3-ruP4fOAadCdSxb9WB_DIWkqFoLzkko2ovyE2hhSitjqfXSdid-agp686Z3-9aYnbxq4Hr2NqYdTCscVXw6jTtbh5GZcbgfdBPdv_gflJnip</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Chu, Edward T.-H.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201209</creationdate><title>Energy-balanced sampling workload allocation in wireless sensor networks</title><author>Chu, Edward T.-H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-120a8d25246f1ce7acce8bc225a78044777ed62c6fedd4f38ecac3b0b523374b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Data collection</topic><topic>Embedded systems</topic><topic>Energy aware systems</topic><topic>Sampling rate allocation</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Edward T.-H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Edward T.-H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-balanced sampling workload allocation in wireless sensor networks</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2012-09</date><risdate>2012</risdate><volume>64</volume><issue>5</issue><spage>1376</spage><epage>1389</epage><pages>1376-1389</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>The quality of a wireless sensor network application is often measured by the number of samples collected in a period of time. Examples include debris flow monitoring systems, flood warning system and so on. In many situations, the number of collected samples has to be larger than a specific bound in order to reconstruct the monitored phenomenon. Considering that the network transmission consumes most energy in a wireless sensor network, the paths to forward collected samples back to the gateway have to be carefully chosen to avoid dead nodes and therefore network disconnection. In this paper, we investigate an optimization problem of balancing the energy consumption among sensor nodes while ensuring quality constraints. We prove that this problem is NP-hard and present a distributed algorithm. Our experiment results show that our method outperforms existing algorithms in balancing energy consumption of sensor nodes.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2012.03.083</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2012-09, Vol.64 (5), p.1376-1389
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_1494335172
source ScienceDirect Freedom Collection
subjects Algorithms
Data collection
Embedded systems
Energy aware systems
Sampling rate allocation
Wireless sensor networks
title Energy-balanced sampling workload allocation in wireless sensor networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A25%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-balanced%20sampling%20workload%20allocation%20in%20wireless%20sensor%20networks&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Chu,%20Edward%20T.-H.&rft.date=2012-09&rft.volume=64&rft.issue=5&rft.spage=1376&rft.epage=1389&rft.pages=1376-1389&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2012.03.083&rft_dat=%3Cproquest_cross%3E1494335172%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-120a8d25246f1ce7acce8bc225a78044777ed62c6fedd4f38ecac3b0b523374b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1494335172&rft_id=info:pmid/&rfr_iscdi=true