Loading…

Structure and properties of polypropylene-nanoclay composites

The structure, morphology and mechanical properties of polypropylene-nanoclay composites containing 1 to15 wt.% nanoclay was investigated. Combination of wide-angle x-ray diffraction (WAXD) and transmission electron microscopy (TEM) was used to determine nanocomposite morphology. Mixture of intercal...

Full description

Saved in:
Bibliographic Details
Published in:Journal of polymer research 2013-12, Vol.20 (12), p.1-13, Article 323
Main Authors: Hegde, Raghavendra R., Bhat, Gajanan S., Spruiell, Joseph E., Benson, Roberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The structure, morphology and mechanical properties of polypropylene-nanoclay composites containing 1 to15 wt.% nanoclay was investigated. Combination of wide-angle x-ray diffraction (WAXD) and transmission electron microscopy (TEM) was used to determine nanocomposite morphology. Mixture of intercalated and exfoliated morphology was observed for all the samples. Samples with 1 to 5 wt.% clay showed shear induced orientation of clay platelets in the surface region of the molded bars. Glass transition temperature slightly decreased due to the plasticizing effect of additives. At higher weight percentage reinforcement (10–15 wt.%), up to 67 % improvement in tensile modulus is observed. Breaking energy was significantly improved for samples with up to 2 wt.% nanoclay additives. With further increase in nanoclay weight percentage, failure mode shifted from ductile to brittle. Increase in exclusion of clay additives at the boundary of spherulites and segregation of clay platelets were observed for samples with higher weight percentage of clay additives. Figure The structure, morphology and mechanical properties of polypropylene-nanoclay composites with 1 to 15 wt.% nanoclay additives were investigated. Mixture of intercalated and exfoliated morphology was observed in nanocomposites. At higher weight percentage reinforcement (10–15 wt.%), up to 67 % improvement in tensile modulus is observed. At higher weight percentage, exclusion of clay additives at the boundary of spherulites was observed. This study illustrates that along with the thermodynamic driving force, spherulite formation also drives the ultimate morphology
ISSN:1022-9760
1572-8935
DOI:10.1007/s10965-013-0323-1