Loading…
Electric field activated nonlinear anisotropic charge transport in doped polypyrrole
Electric field activated nonlinear transport is investigated in polypyrrole thin film in both in-plane and out-of-plane geometries down to 5 K and strong anisotropy is observed. A morphological model is suggested to explain the anisotropy through inter-chain and intra-chain transport. The deviation...
Saved in:
Published in: | Applied physics letters 2013-12, Vol.103 (23) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electric field activated nonlinear transport is investigated in polypyrrole thin film in both in-plane and out-of-plane geometries down to 5 K and strong anisotropy is observed. A morphological model is suggested to explain the anisotropy through inter-chain and intra-chain transport. The deviation from the variable range hopping at low temperature is accounted by fluctuation assisted transport. From Zabrodaskii plots, it is found that electric field can tune the transport from insulating to metallic regime. Glazman–Matveev model is used to describe the nonlinear conduction. Field scaling analysis shows that conductance data at different temperature falls on to a single curve. Nonlinearity exponent, mT and characteristic length, LE are estimated to characterize the transport in both the geometries. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4840335 |