Loading…

Adaptive numerical simulation of traffic flow density

In this paper, we describe a one-dimensional adaptive moving mesh method and apply it to the traffic flow model introduced in 2006 by Sopasakis and Katsoulakis and its modified model proposed in 2009 by Kurganov and Polizzi. These models can be written as a scalar conservation law with a global flux...

Full description

Saved in:
Bibliographic Details
Published in:Computers & mathematics with applications (1987) 2013-09, Vol.66 (3), p.227-237
Main Authors: Soheili, Ali R., Kerayechian, A., Tareghian, H.R., Davoodi, N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c381t-dd5e12f2ee02dab933c200a85b379a3a118476fe78c54a2c0587a085ce4901aa3
cites cdi_FETCH-LOGICAL-c381t-dd5e12f2ee02dab933c200a85b379a3a118476fe78c54a2c0587a085ce4901aa3
container_end_page 237
container_issue 3
container_start_page 227
container_title Computers & mathematics with applications (1987)
container_volume 66
creator Soheili, Ali R.
Kerayechian, A.
Tareghian, H.R.
Davoodi, N.
description In this paper, we describe a one-dimensional adaptive moving mesh method and apply it to the traffic flow model introduced in 2006 by Sopasakis and Katsoulakis and its modified model proposed in 2009 by Kurganov and Polizzi. These models can be written as a scalar conservation law with a global flux. The proposed scheme is an extension of the moving non-oscillatory central scheme, which belongs to a class of moving finite volume methods. We also modify the model given by Kurganov and Polizzi to account for the driver’s reaction, i.e. delayed response. Finally, the moving finite volume method is extended accordingly.
doi_str_mv 10.1016/j.camwa.2013.04.025
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1494365547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122113002526</els_id><sourcerecordid>1494365547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-dd5e12f2ee02dab933c200a85b379a3a118476fe78c54a2c0587a085ce4901aa3</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwC1gysiRcvxJnYKgqXlIlFpitW-dacpVHsZNW_fe0lJnpLOc70vkYu-dQcODl46Zw2O2xEMBlAaoAoS_YjJtK5lVZmks2A1ObnAvBr9lNShsAUFLAjOlFg9sx7Cjrp45icNhmKXRTi2MY-mzw2RjR--Ay3w77rKE-hfFwy648tonu_nLOvl6eP5dv-erj9X25WOVOGj7mTaOJCy-IQDS4rqV0AgCNXsuqRomcG1WVnirjtELhQJsKwWhHqgaOKOfs4by7jcP3RGm0XUiO2hZ7GqZkuaqVLLVW1bEqz1UXh5QiebuNocN4sBzsSZLd2F9J9iTJgrJHSUfq6UzR8cUuULTJBeodNSGSG20zhH_5H-A6cH0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1494365547</pqid></control><display><type>article</type><title>Adaptive numerical simulation of traffic flow density</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Soheili, Ali R. ; Kerayechian, A. ; Tareghian, H.R. ; Davoodi, N.</creator><creatorcontrib>Soheili, Ali R. ; Kerayechian, A. ; Tareghian, H.R. ; Davoodi, N.</creatorcontrib><description>In this paper, we describe a one-dimensional adaptive moving mesh method and apply it to the traffic flow model introduced in 2006 by Sopasakis and Katsoulakis and its modified model proposed in 2009 by Kurganov and Polizzi. These models can be written as a scalar conservation law with a global flux. The proposed scheme is an extension of the moving non-oscillatory central scheme, which belongs to a class of moving finite volume methods. We also modify the model given by Kurganov and Polizzi to account for the driver’s reaction, i.e. delayed response. Finally, the moving finite volume method is extended accordingly.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2013.04.025</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computer simulation ; Finite volume method ; Moving mesh method ; Traffic flow models</subject><ispartof>Computers &amp; mathematics with applications (1987), 2013-09, Vol.66 (3), p.227-237</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-dd5e12f2ee02dab933c200a85b379a3a118476fe78c54a2c0587a085ce4901aa3</citedby><cites>FETCH-LOGICAL-c381t-dd5e12f2ee02dab933c200a85b379a3a118476fe78c54a2c0587a085ce4901aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Soheili, Ali R.</creatorcontrib><creatorcontrib>Kerayechian, A.</creatorcontrib><creatorcontrib>Tareghian, H.R.</creatorcontrib><creatorcontrib>Davoodi, N.</creatorcontrib><title>Adaptive numerical simulation of traffic flow density</title><title>Computers &amp; mathematics with applications (1987)</title><description>In this paper, we describe a one-dimensional adaptive moving mesh method and apply it to the traffic flow model introduced in 2006 by Sopasakis and Katsoulakis and its modified model proposed in 2009 by Kurganov and Polizzi. These models can be written as a scalar conservation law with a global flux. The proposed scheme is an extension of the moving non-oscillatory central scheme, which belongs to a class of moving finite volume methods. We also modify the model given by Kurganov and Polizzi to account for the driver’s reaction, i.e. delayed response. Finally, the moving finite volume method is extended accordingly.</description><subject>Computer simulation</subject><subject>Finite volume method</subject><subject>Moving mesh method</subject><subject>Traffic flow models</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwC1gysiRcvxJnYKgqXlIlFpitW-dacpVHsZNW_fe0lJnpLOc70vkYu-dQcODl46Zw2O2xEMBlAaoAoS_YjJtK5lVZmks2A1ObnAvBr9lNShsAUFLAjOlFg9sx7Cjrp45icNhmKXRTi2MY-mzw2RjR--Ay3w77rKE-hfFwy648tonu_nLOvl6eP5dv-erj9X25WOVOGj7mTaOJCy-IQDS4rqV0AgCNXsuqRomcG1WVnirjtELhQJsKwWhHqgaOKOfs4by7jcP3RGm0XUiO2hZ7GqZkuaqVLLVW1bEqz1UXh5QiebuNocN4sBzsSZLd2F9J9iTJgrJHSUfq6UzR8cUuULTJBeodNSGSG20zhH_5H-A6cH0</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Soheili, Ali R.</creator><creator>Kerayechian, A.</creator><creator>Tareghian, H.R.</creator><creator>Davoodi, N.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201309</creationdate><title>Adaptive numerical simulation of traffic flow density</title><author>Soheili, Ali R. ; Kerayechian, A. ; Tareghian, H.R. ; Davoodi, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-dd5e12f2ee02dab933c200a85b379a3a118476fe78c54a2c0587a085ce4901aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computer simulation</topic><topic>Finite volume method</topic><topic>Moving mesh method</topic><topic>Traffic flow models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soheili, Ali R.</creatorcontrib><creatorcontrib>Kerayechian, A.</creatorcontrib><creatorcontrib>Tareghian, H.R.</creatorcontrib><creatorcontrib>Davoodi, N.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soheili, Ali R.</au><au>Kerayechian, A.</au><au>Tareghian, H.R.</au><au>Davoodi, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive numerical simulation of traffic flow density</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2013-09</date><risdate>2013</risdate><volume>66</volume><issue>3</issue><spage>227</spage><epage>237</epage><pages>227-237</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this paper, we describe a one-dimensional adaptive moving mesh method and apply it to the traffic flow model introduced in 2006 by Sopasakis and Katsoulakis and its modified model proposed in 2009 by Kurganov and Polizzi. These models can be written as a scalar conservation law with a global flux. The proposed scheme is an extension of the moving non-oscillatory central scheme, which belongs to a class of moving finite volume methods. We also modify the model given by Kurganov and Polizzi to account for the driver’s reaction, i.e. delayed response. Finally, the moving finite volume method is extended accordingly.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2013.04.025</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2013-09, Vol.66 (3), p.227-237
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_1494365547
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Computer simulation
Finite volume method
Moving mesh method
Traffic flow models
title Adaptive numerical simulation of traffic flow density
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A57%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20numerical%20simulation%20of%20traffic%20flow%20density&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Soheili,%20Ali%20R.&rft.date=2013-09&rft.volume=66&rft.issue=3&rft.spage=227&rft.epage=237&rft.pages=227-237&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2013.04.025&rft_dat=%3Cproquest_cross%3E1494365547%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-dd5e12f2ee02dab933c200a85b379a3a118476fe78c54a2c0587a085ce4901aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1494365547&rft_id=info:pmid/&rfr_iscdi=true