Loading…
Adaptive numerical simulation of traffic flow density
In this paper, we describe a one-dimensional adaptive moving mesh method and apply it to the traffic flow model introduced in 2006 by Sopasakis and Katsoulakis and its modified model proposed in 2009 by Kurganov and Polizzi. These models can be written as a scalar conservation law with a global flux...
Saved in:
Published in: | Computers & mathematics with applications (1987) 2013-09, Vol.66 (3), p.227-237 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c381t-dd5e12f2ee02dab933c200a85b379a3a118476fe78c54a2c0587a085ce4901aa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c381t-dd5e12f2ee02dab933c200a85b379a3a118476fe78c54a2c0587a085ce4901aa3 |
container_end_page | 237 |
container_issue | 3 |
container_start_page | 227 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 66 |
creator | Soheili, Ali R. Kerayechian, A. Tareghian, H.R. Davoodi, N. |
description | In this paper, we describe a one-dimensional adaptive moving mesh method and apply it to the traffic flow model introduced in 2006 by Sopasakis and Katsoulakis and its modified model proposed in 2009 by Kurganov and Polizzi. These models can be written as a scalar conservation law with a global flux. The proposed scheme is an extension of the moving non-oscillatory central scheme, which belongs to a class of moving finite volume methods.
We also modify the model given by Kurganov and Polizzi to account for the driver’s reaction, i.e. delayed response. Finally, the moving finite volume method is extended accordingly. |
doi_str_mv | 10.1016/j.camwa.2013.04.025 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1494365547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122113002526</els_id><sourcerecordid>1494365547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-dd5e12f2ee02dab933c200a85b379a3a118476fe78c54a2c0587a085ce4901aa3</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwC1gysiRcvxJnYKgqXlIlFpitW-dacpVHsZNW_fe0lJnpLOc70vkYu-dQcODl46Zw2O2xEMBlAaoAoS_YjJtK5lVZmks2A1ObnAvBr9lNShsAUFLAjOlFg9sx7Cjrp45icNhmKXRTi2MY-mzw2RjR--Ay3w77rKE-hfFwy648tonu_nLOvl6eP5dv-erj9X25WOVOGj7mTaOJCy-IQDS4rqV0AgCNXsuqRomcG1WVnirjtELhQJsKwWhHqgaOKOfs4by7jcP3RGm0XUiO2hZ7GqZkuaqVLLVW1bEqz1UXh5QiebuNocN4sBzsSZLd2F9J9iTJgrJHSUfq6UzR8cUuULTJBeodNSGSG20zhH_5H-A6cH0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1494365547</pqid></control><display><type>article</type><title>Adaptive numerical simulation of traffic flow density</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Soheili, Ali R. ; Kerayechian, A. ; Tareghian, H.R. ; Davoodi, N.</creator><creatorcontrib>Soheili, Ali R. ; Kerayechian, A. ; Tareghian, H.R. ; Davoodi, N.</creatorcontrib><description>In this paper, we describe a one-dimensional adaptive moving mesh method and apply it to the traffic flow model introduced in 2006 by Sopasakis and Katsoulakis and its modified model proposed in 2009 by Kurganov and Polizzi. These models can be written as a scalar conservation law with a global flux. The proposed scheme is an extension of the moving non-oscillatory central scheme, which belongs to a class of moving finite volume methods.
We also modify the model given by Kurganov and Polizzi to account for the driver’s reaction, i.e. delayed response. Finally, the moving finite volume method is extended accordingly.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2013.04.025</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computer simulation ; Finite volume method ; Moving mesh method ; Traffic flow models</subject><ispartof>Computers & mathematics with applications (1987), 2013-09, Vol.66 (3), p.227-237</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-dd5e12f2ee02dab933c200a85b379a3a118476fe78c54a2c0587a085ce4901aa3</citedby><cites>FETCH-LOGICAL-c381t-dd5e12f2ee02dab933c200a85b379a3a118476fe78c54a2c0587a085ce4901aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Soheili, Ali R.</creatorcontrib><creatorcontrib>Kerayechian, A.</creatorcontrib><creatorcontrib>Tareghian, H.R.</creatorcontrib><creatorcontrib>Davoodi, N.</creatorcontrib><title>Adaptive numerical simulation of traffic flow density</title><title>Computers & mathematics with applications (1987)</title><description>In this paper, we describe a one-dimensional adaptive moving mesh method and apply it to the traffic flow model introduced in 2006 by Sopasakis and Katsoulakis and its modified model proposed in 2009 by Kurganov and Polizzi. These models can be written as a scalar conservation law with a global flux. The proposed scheme is an extension of the moving non-oscillatory central scheme, which belongs to a class of moving finite volume methods.
We also modify the model given by Kurganov and Polizzi to account for the driver’s reaction, i.e. delayed response. Finally, the moving finite volume method is extended accordingly.</description><subject>Computer simulation</subject><subject>Finite volume method</subject><subject>Moving mesh method</subject><subject>Traffic flow models</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwC1gysiRcvxJnYKgqXlIlFpitW-dacpVHsZNW_fe0lJnpLOc70vkYu-dQcODl46Zw2O2xEMBlAaoAoS_YjJtK5lVZmks2A1ObnAvBr9lNShsAUFLAjOlFg9sx7Cjrp45icNhmKXRTi2MY-mzw2RjR--Ay3w77rKE-hfFwy648tonu_nLOvl6eP5dv-erj9X25WOVOGj7mTaOJCy-IQDS4rqV0AgCNXsuqRomcG1WVnirjtELhQJsKwWhHqgaOKOfs4by7jcP3RGm0XUiO2hZ7GqZkuaqVLLVW1bEqz1UXh5QiebuNocN4sBzsSZLd2F9J9iTJgrJHSUfq6UzR8cUuULTJBeodNSGSG20zhH_5H-A6cH0</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Soheili, Ali R.</creator><creator>Kerayechian, A.</creator><creator>Tareghian, H.R.</creator><creator>Davoodi, N.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201309</creationdate><title>Adaptive numerical simulation of traffic flow density</title><author>Soheili, Ali R. ; Kerayechian, A. ; Tareghian, H.R. ; Davoodi, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-dd5e12f2ee02dab933c200a85b379a3a118476fe78c54a2c0587a085ce4901aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computer simulation</topic><topic>Finite volume method</topic><topic>Moving mesh method</topic><topic>Traffic flow models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soheili, Ali R.</creatorcontrib><creatorcontrib>Kerayechian, A.</creatorcontrib><creatorcontrib>Tareghian, H.R.</creatorcontrib><creatorcontrib>Davoodi, N.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soheili, Ali R.</au><au>Kerayechian, A.</au><au>Tareghian, H.R.</au><au>Davoodi, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive numerical simulation of traffic flow density</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2013-09</date><risdate>2013</risdate><volume>66</volume><issue>3</issue><spage>227</spage><epage>237</epage><pages>227-237</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this paper, we describe a one-dimensional adaptive moving mesh method and apply it to the traffic flow model introduced in 2006 by Sopasakis and Katsoulakis and its modified model proposed in 2009 by Kurganov and Polizzi. These models can be written as a scalar conservation law with a global flux. The proposed scheme is an extension of the moving non-oscillatory central scheme, which belongs to a class of moving finite volume methods.
We also modify the model given by Kurganov and Polizzi to account for the driver’s reaction, i.e. delayed response. Finally, the moving finite volume method is extended accordingly.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2013.04.025</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2013-09, Vol.66 (3), p.227-237 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_miscellaneous_1494365547 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Computer simulation Finite volume method Moving mesh method Traffic flow models |
title | Adaptive numerical simulation of traffic flow density |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A57%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20numerical%20simulation%20of%20traffic%20flow%20density&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Soheili,%20Ali%20R.&rft.date=2013-09&rft.volume=66&rft.issue=3&rft.spage=227&rft.epage=237&rft.pages=227-237&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2013.04.025&rft_dat=%3Cproquest_cross%3E1494365547%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-dd5e12f2ee02dab933c200a85b379a3a118476fe78c54a2c0587a085ce4901aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1494365547&rft_id=info:pmid/&rfr_iscdi=true |