Loading…
Theoretical characterisation of highly efficient dye-sensitised solar cells
Molecular electronic structure calculations, employing density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methodologies, have been carried out to improve the performance of the synthesised dye YD2-o-C8 which is characterised by 11.9%-12.7% efficiencies. We aimed to...
Saved in:
Published in: | Molecular physics 2014-01, Vol.112 (1), p.22-34 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Molecular electronic structure calculations, employing density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methodologies, have been carried out to improve the performance of the synthesised dye YD2-o-C8 which is characterised by 11.9%-12.7% efficiencies. We aimed to narrow the band gap of YD2-o-C8 to extend the light-harvesting region to near-infrared (NIR). This was done by incorporating Cd instead of Zn onto the porphyrin ring and elongating the length of π-conjugation by adding ethynylene link and anthracene unit, so that the performances of the suggested cells could be expected to exceed the 11.9%-12.7% efficiencies with TiO
2
, ZnO
2
, and WO
3
oxide electrodes. The effects of modifying the central metal and elongating the length of π-conjugation on cell performance are confirmed in terms of frontier molecular orbital (FMO) energy gaps, density of states (DOS), molecular electrostatic potentials (MEPs), non-linear optical (NLO) properties, ultraviolet-visible (UV-vis) electronic absorption, and
1
H nuclear magnetic resonance chemical shifts. Increasing the length of π-conjugation of the D-π-A dyes leads to increasing the DOS near Fermi levels, more active NLO performance, strong response to the external electric field, delocalisation of the negative charges near the anchoring groups, deep electron injection, suppressing macrocycle aggregation, active dye regeneration, and inhibited dye recombination. The calculated band gap/eV of the present DMP-Zn is correlated with the experimental (E
1/2
(oxidation)-E
1/2
(reduction)/V) potentials of the identical YD2-o-C8. A co-sensitiser is suggested for NIR sensitisation (550-950 nm) to increase the power-to-conversion efficiency beyond 14%. |
---|---|
ISSN: | 0026-8976 1362-3028 |
DOI: | 10.1080/00268976.2013.795249 |